9"""Z3 is a high performance theorem prover developed at Microsoft Research.
11Z3 is used in many applications such as: software/hardware verification and testing,
12constraint solving, analysis of hybrid systems, security, biology (in silico analysis),
13and geometrical problems.
16Please send feedback, comments and/or corrections on the Issue tracker for
17https://github.com/Z3prover/z3.git. Your comments are very valuable.
38... x = BitVec('x', 32)
40... # the expression x + y is type incorrect
42... except Z3Exception as ex:
43... print("failed: %s" % ex)
49from .z3consts
import *
50from .z3printer
import *
51from fractions
import Fraction
56if sys.version_info.major >= 3:
57 from typing
import Iterable, Iterator
59from collections.abc
import Callable
75if sys.version_info.major < 3:
77 return isinstance(v, (int, long))
80 return isinstance(v, int)
92 major = ctypes.c_uint(0)
93 minor = ctypes.c_uint(0)
94 build = ctypes.c_uint(0)
95 rev = ctypes.c_uint(0)
97 return "%s.%s.%s" % (major.value, minor.value, build.value)
101 major = ctypes.c_uint(0)
102 minor = ctypes.c_uint(0)
103 build = ctypes.c_uint(0)
104 rev = ctypes.c_uint(0)
106 return (major.value, minor.value, build.value, rev.value)
115 raise Z3Exception(msg)
119 _z3_assert(ctypes.c_int(n).value == n, name +
" is too large")
123 """Log interaction to a file. This function must be invoked immediately after init(). """
128 """Append user-defined string to interaction log. """
133 """Convert an integer or string into a Z3 symbol."""
141 """Convert a Z3 symbol back into a Python object. """
154 if len(args) == 1
and (isinstance(args[0], tuple)
or isinstance(args[0], list)):
156 elif len(args) == 1
and (isinstance(args[0], set)
or isinstance(args[0], AstVector)):
157 return [arg
for arg
in args[0]]
158 elif len(args) == 1
and isinstance(args[0], Iterator):
170 if isinstance(args, (set, AstVector, tuple)):
171 return [arg
for arg
in args]
179 if isinstance(val, bool):
180 return "true" if val
else "false"
191 """A Context manages all other Z3 objects, global configuration options, etc.
193 Z3Py uses a default global context. For most applications this is sufficient.
194 An application may use multiple Z3 contexts. Objects created in one context
195 cannot be used in another one. However, several objects may be "translated" from
196 one context to another. It is not safe to access Z3 objects from multiple threads.
197 The only exception is the method `interrupt()` that can be used to interrupt() a long
199 The initialization method receives global configuration options for the new context.
204 _z3_assert(len(args) % 2 == 0,
"Argument list must have an even number of elements.")
223 if Z3_del_context
is not None and self.
owner:
229 """Return a reference to the actual C pointer to the Z3 context."""
233 """Interrupt a solver performing a satisfiability test, a tactic processing a goal, or simplify functions.
235 This method can be invoked from a thread different from the one executing the
236 interruptible procedure.
241 """Return the global parameter description set."""
245 """Set the pretty printing mode for ASTs.
247 The following modes are available:
248 - Z3_PRINT_SMTLIB_FULL (0): Print AST nodes in SMTLIB verbose format.
249 - Z3_PRINT_LOW_LEVEL (1): Print AST nodes using a low-level format.
250 - Z3_PRINT_SMTLIB2_COMPLIANT (2): Print AST nodes in SMTLIB 2.x compliant format.
254 >>> c.set_ast_print_mode(Z3_PRINT_LOW_LEVEL)
258 >>> c.set_ast_print_mode(Z3_PRINT_SMTLIB2_COMPLIANT)
270 """Return a reference to the global Z3 context.
273 >>> x.ctx == main_ctx()
278 >>> x2 = Real('x', c)
285 if _main_ctx
is None:
302 """Set Z3 global (or module) parameters.
304 >>> set_param(precision=10)
307 _z3_assert(len(args) % 2 == 0,
"Argument list must have an even number of elements.")
311 if not set_pp_option(k, v):
326 """Reset all global (or module) parameters.
332 """Alias for 'set_param' for backward compatibility.
338 """Return the value of a Z3 global (or module) parameter
340 >>> get_param('nlsat.reorder')
343 ptr = (ctypes.c_char_p * 1)()
345 r = z3core._to_pystr(ptr[0])
347 raise Z3Exception(
"failed to retrieve value for '%s'" % name)
359 """Superclass for all Z3 objects that have support for pretty printing."""
365 in_html = in_html_mode()
368 set_html_mode(in_html)
373 """AST are Direct Acyclic Graphs (DAGs) used to represent sorts, declarations and expressions."""
381 if self.
ctx.ref()
is not None and self.
ast is not None and Z3_dec_ref
is not None:
389 return obj_to_string(self)
392 return obj_to_string(self)
395 return self.
eq(other)
408 elif is_eq(self)
and self.num_args() == 2:
409 return self.arg(0).
eq(self.arg(1))
411 raise Z3Exception(
"Symbolic expressions cannot be cast to concrete Boolean values.")
414 """Return a string representing the AST node in s-expression notation.
417 >>> ((x + 1)*x).sexpr()
423 """Return a pointer to the corresponding C Z3_ast object."""
427 """Return unique identifier for object. It can be used for hash-tables and maps."""
431 """Return a reference to the C context where this AST node is stored."""
432 return self.
ctx.ref()
435 """Return `True` if `self` and `other` are structurally identical.
442 >>> n1 = simplify(n1)
443 >>> n2 = simplify(n2)
452 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
458 >>> # Nodes in different contexts can't be mixed.
459 >>> # However, we can translate nodes from one context to another.
460 >>> x.translate(c2) + y
464 _z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
471 """Return a hashcode for the `self`.
473 >>> n1 = simplify(Int('x') + 1)
474 >>> n2 = simplify(2 + Int('x') - 1)
475 >>> n1.hash() == n2.hash()
481 """Return a Python value that is equivalent to `self`."""
486 """Return `True` if `a` is an AST node.
490 >>> is_ast(IntVal(10))
494 >>> is_ast(BoolSort())
496 >>> is_ast(Function('f', IntSort(), IntSort()))
503 return isinstance(a, AstRef)
506def eq(a : AstRef, b : AstRef) -> bool:
507 """Return `True` if `a` and `b` are structurally identical AST nodes.
517 >>> eq(simplify(x + 1), simplify(1 + x))
551 _args = (FuncDecl * sz)()
553 _args[i] = args[i].as_func_decl()
561 _args[i] = args[i].as_ast()
569 _args[i] = args[i].as_ast()
577 elif k == Z3_FUNC_DECL_AST:
594 """A Sort is essentially a type. Every Z3 expression has a sort. A sort is an AST node."""
603 """Return the Z3 internal kind of a sort.
604 This method can be used to test if `self` is one of the Z3 builtin sorts.
607 >>> b.kind() == Z3_BOOL_SORT
609 >>> b.kind() == Z3_INT_SORT
611 >>> A = ArraySort(IntSort(), IntSort())
612 >>> A.kind() == Z3_ARRAY_SORT
614 >>> A.kind() == Z3_INT_SORT
620 """Return `True` if `self` is a subsort of `other`.
622 >>> IntSort().subsort(RealSort())
628 """Try to cast `val` as an element of sort `self`.
630 This method is used in Z3Py to convert Python objects such as integers,
631 floats, longs and strings into Z3 expressions.
634 >>> RealSort().cast(x)
643 """Return the name (string) of sort `self`.
645 >>> BoolSort().name()
647 >>> ArraySort(IntSort(), IntSort()).name()
653 """Return `True` if `self` and `other` are the same Z3 sort.
656 >>> p.sort() == BoolSort()
658 >>> p.sort() == IntSort()
666 """Return `True` if `self` and `other` are not the same Z3 sort.
669 >>> p.sort() != BoolSort()
671 >>> p.sort() != IntSort()
677 """Create the function space Array(self, other)"""
682 return AstRef.__hash__(self)
686 """Return `True` if `s` is a Z3 sort.
688 >>> is_sort(IntSort())
690 >>> is_sort(Int('x'))
692 >>> is_expr(Int('x'))
695 return isinstance(s, SortRef)
700 _z3_assert(isinstance(s, Sort),
"Z3 Sort expected")
702 if k == Z3_BOOL_SORT:
704 elif k == Z3_INT_SORT
or k == Z3_REAL_SORT:
706 elif k == Z3_BV_SORT:
708 elif k == Z3_ARRAY_SORT:
710 elif k == Z3_DATATYPE_SORT:
712 elif k == Z3_FINITE_DOMAIN_SORT:
714 elif k == Z3_FLOATING_POINT_SORT:
716 elif k == Z3_ROUNDING_MODE_SORT:
718 elif k == Z3_RE_SORT:
720 elif k == Z3_SEQ_SORT:
722 elif k == Z3_CHAR_SORT:
724 elif k == Z3_TYPE_VAR:
729def _sort(ctx : Context, a : Any) -> SortRef:
734 """Create a new uninterpreted sort named `name`.
736 If `ctx=None`, then the new sort is declared in the global Z3Py context.
738 >>> A = DeclareSort('A')
739 >>> a = Const('a', A)
740 >>> b = Const('b', A)
752 """Type variable reference"""
762 """Create a new type variable named `name`.
764 If `ctx=None`, then the new sort is declared in the global Z3Py context.
779 """Function declaration. Every constant and function have an associated declaration.
781 The declaration assigns a name, a sort (i.e., type), and for function
782 the sort (i.e., type) of each of its arguments. Note that, in Z3,
783 a constant is a function with 0 arguments.
796 """Return the name of the function declaration `self`.
798 >>> f = Function('f', IntSort(), IntSort())
801 >>> isinstance(f.name(), str)
807 """Return the number of arguments of a function declaration.
808 If `self` is a constant, then `self.arity()` is 0.
810 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
817 """Return the sort of the argument `i` of a function declaration.
818 This method assumes that `0 <= i < self.arity()`.
820 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
829 """Return the sort of the range of a function declaration.
830 For constants, this is the sort of the constant.
832 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
839 """Return the internal kind of a function declaration.
840 It can be used to identify Z3 built-in functions such as addition, multiplication, etc.
843 >>> d = (x + 1).decl()
844 >>> d.kind() == Z3_OP_ADD
846 >>> d.kind() == Z3_OP_MUL
854 result = [
None for i
in range(n)]
857 if k == Z3_PARAMETER_INT:
859 elif k == Z3_PARAMETER_DOUBLE:
861 elif k == Z3_PARAMETER_RATIONAL:
863 elif k == Z3_PARAMETER_SYMBOL:
865 elif k == Z3_PARAMETER_SORT:
867 elif k == Z3_PARAMETER_AST:
869 elif k == Z3_PARAMETER_FUNC_DECL:
871 elif k == Z3_PARAMETER_INTERNAL:
872 result[i] =
"internal parameter"
873 elif k == Z3_PARAMETER_ZSTRING:
874 result[i] =
"internal string"
880 """Create a Z3 application expression using the function `self`, and the given arguments.
882 The arguments must be Z3 expressions. This method assumes that
883 the sorts of the elements in `args` match the sorts of the
884 domain. Limited coercion is supported. For example, if
885 args[0] is a Python integer, and the function expects a Z3
886 integer, then the argument is automatically converted into a
889 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
899 _args = (Ast * num)()
904 tmp = self.
domain(i).cast(args[i])
906 _args[i] = tmp.as_ast()
911 """Return `True` if `a` is a Z3 function declaration.
913 >>> f = Function('f', IntSort(), IntSort())
920 return isinstance(a, FuncDeclRef)
924 """Create a new Z3 uninterpreted function with the given sorts.
926 >>> f = Function('f', IntSort(), IntSort())
932 _z3_assert(len(sig) > 0,
"At least two arguments expected")
937 dom = (Sort * arity)()
938 for i
in range(arity):
947 """Create a new fresh Z3 uninterpreted function with the given sorts.
951 _z3_assert(len(sig) > 0,
"At least two arguments expected")
956 dom = (z3.Sort * arity)()
957 for i
in range(arity):
970 """Create a new Z3 recursive with the given sorts."""
973 _z3_assert(len(sig) > 0,
"At least two arguments expected")
978 dom = (Sort * arity)()
979 for i
in range(arity):
988 """Set the body of a recursive function.
989 Recursive definitions can be simplified if they are applied to ground
992 >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
993 >>> n = Int('n', ctx)
994 >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
997 >>> s = Solver(ctx=ctx)
998 >>> s.add(fac(n) < 3)
1001 >>> s.model().eval(fac(5))
1011 _args[i] = args[i].ast
1022 """Constraints, formulas and terms are expressions in Z3.
1024 Expressions are ASTs. Every expression has a sort.
1025 There are three main kinds of expressions:
1026 function applications, quantifiers and bounded variables.
1027 A constant is a function application with 0 arguments.
1028 For quantifier free problems, all expressions are
1029 function applications.
1039 """Return the sort of expression `self`.
1051 """Shorthand for `self.sort().kind()`.
1053 >>> a = Array('a', IntSort(), IntSort())
1054 >>> a.sort_kind() == Z3_ARRAY_SORT
1056 >>> a.sort_kind() == Z3_INT_SORT
1062 """Return a Z3 expression that represents the constraint `self == other`.
1064 If `other` is `None`, then this method simply returns `False`.
1080 return AstRef.__hash__(self)
1083 """Return a Z3 expression that represents the constraint `self != other`.
1085 If `other` is `None`, then this method simply returns `True`.
1104 """Return the Z3 function declaration associated with a Z3 application.
1106 >>> f = Function('f', IntSort(), IntSort())
1119 """Return the Z3 internal kind of a function application."""
1126 """Return the number of arguments of a Z3 application.
1130 >>> (a + b).num_args()
1132 >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
1142 """Return argument `idx` of the application `self`.
1144 This method assumes that `self` is a function application with at least `idx+1` arguments.
1148 >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
1163 """Return a list containing the children of the given expression
1167 >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
1173 return [self.
arg(i)
for i
in range(self.
num_args())]
1178 """Update the arguments of the expression.
1180 Return a new expression with the same function declaration and updated arguments.
1181 The number of new arguments must match the current number of arguments.
1183 >>> f = Function('f', IntSort(), IntSort(), IntSort())
1196 _args = (Ast * num)()
1197 for i
in range(num):
1198 _args[i] = args[i].
as_ast()
1211 """inverse function to the serialize method on ExprRef.
1212 It is made available to make it easier for users to serialize expressions back and forth between
1213 strings. Solvers can be serialized using the 'sexpr()' method.
1217 if len(s.assertions()) != 1:
1218 raise Z3Exception(
"single assertion expected")
1219 fml = s.assertions()[0]
1220 if fml.num_args() != 1:
1221 raise Z3Exception(
"dummy function 'F' expected")
1225 if isinstance(a, Pattern):
1229 if k == Z3_QUANTIFIER_AST:
1232 if sk == Z3_BOOL_SORT:
1234 if sk == Z3_INT_SORT:
1235 if k == Z3_NUMERAL_AST:
1238 if sk == Z3_REAL_SORT:
1239 if k == Z3_NUMERAL_AST:
1244 if sk == Z3_BV_SORT:
1245 if k == Z3_NUMERAL_AST:
1249 if sk == Z3_ARRAY_SORT:
1251 if sk == Z3_DATATYPE_SORT:
1253 if sk == Z3_FLOATING_POINT_SORT:
1257 return FPRef(a, ctx)
1258 if sk == Z3_FINITE_DOMAIN_SORT:
1259 if k == Z3_NUMERAL_AST:
1263 if sk == Z3_ROUNDING_MODE_SORT:
1265 if sk == Z3_SEQ_SORT:
1267 if sk == Z3_CHAR_SORT:
1269 if sk == Z3_RE_SORT:
1270 return ReRef(a, ctx)
1287 _z3_assert(s1.ctx == s.ctx,
"context mismatch")
1293 if not isinstance(a, ExprRef):
1295 if not isinstance(b, ExprRef):
1309 if isinstance(a, str)
and isinstance(b, SeqRef):
1311 if isinstance(b, str)
and isinstance(a, SeqRef):
1313 if isinstance(a, float)
and isinstance(b, ArithRef):
1315 if isinstance(b, float)
and isinstance(a, ArithRef):
1331 for element
in sequence:
1332 result = func(result, element)
1343 alist = [
_py2expr(a, ctx)
for a
in alist]
1344 s =
_reduce(_coerce_expr_merge, alist,
None)
1345 return [s.cast(a)
for a
in alist]
1349 """Return `True` if `a` is a Z3 expression.
1356 >>> is_expr(IntSort())
1360 >>> is_expr(IntVal(1))
1363 >>> is_expr(ForAll(x, x >= 0))
1365 >>> is_expr(FPVal(1.0))
1368 return isinstance(a, ExprRef)
1372 """Return `True` if `a` is a Z3 function application.
1374 Note that, constants are function applications with 0 arguments.
1381 >>> is_app(IntSort())
1385 >>> is_app(IntVal(1))
1388 >>> is_app(ForAll(x, x >= 0))
1391 if not isinstance(a, ExprRef):
1394 return k == Z3_NUMERAL_AST
or k == Z3_APP_AST
1398 """Return `True` if `a` is Z3 constant/variable expression.
1407 >>> is_const(IntVal(1))
1410 >>> is_const(ForAll(x, x >= 0))
1413 return is_app(a)
and a.num_args() == 0
1417 """Return `True` if `a` is variable.
1419 Z3 uses de-Bruijn indices for representing bound variables in
1427 >>> f = Function('f', IntSort(), IntSort())
1428 >>> # Z3 replaces x with bound variables when ForAll is executed.
1429 >>> q = ForAll(x, f(x) == x)
1435 >>> is_var(b.arg(1))
1442 """Return the de-Bruijn index of the Z3 bounded variable `a`.
1450 >>> f = Function('f', IntSort(), IntSort(), IntSort())
1451 >>> # Z3 replaces x and y with bound variables when ForAll is executed.
1452 >>> q = ForAll([x, y], f(x, y) == x + y)
1454 f(Var(1), Var(0)) == Var(1) + Var(0)
1458 >>> v1 = b.arg(0).arg(0)
1459 >>> v2 = b.arg(0).arg(1)
1464 >>> get_var_index(v1)
1466 >>> get_var_index(v2)
1475 """Return `True` if `a` is an application of the given kind `k`.
1479 >>> is_app_of(n, Z3_OP_ADD)
1481 >>> is_app_of(n, Z3_OP_MUL)
1484 return is_app(a)
and a.kind() == k
1487def If(a, b, c, ctx=None):
1488 """Create a Z3 if-then-else expression.
1492 >>> max = If(x > y, x, y)
1498 if isinstance(a, Probe)
or isinstance(b, Tactic)
or isinstance(c, Tactic):
1499 return Cond(a, b, c, ctx)
1506 _z3_assert(a.ctx == b.ctx,
"Context mismatch")
1511 """Create a Z3 distinct expression.
1518 >>> Distinct(x, y, z)
1520 >>> simplify(Distinct(x, y, z))
1522 >>> simplify(Distinct(x, y, z), blast_distinct=True)
1523 And(Not(x == y), Not(x == z), Not(y == z))
1528 _z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression")
1537 _z3_assert(a.ctx == b.ctx,
"Context mismatch")
1538 args[0] = a.as_ast()
1539 args[1] = b.as_ast()
1540 return f(a.ctx.ref(), 2, args)
1544 """Create a constant of the given sort.
1546 >>> Const('x', IntSort())
1550 _z3_assert(isinstance(sort, SortRef),
"Z3 sort expected")
1556 """Create several constants of the given sort.
1558 `names` is a string containing the names of all constants to be created.
1559 Blank spaces separate the names of different constants.
1561 >>> x, y, z = Consts('x y z', IntSort())
1565 if isinstance(names, str):
1566 names = names.split(
" ")
1567 return [
Const(name, sort)
for name
in names]
1571 """Create a fresh constant of a specified sort"""
1578def Var(idx : int, s : SortRef) -> ExprRef:
1579 """Create a Z3 free variable. Free variables are used to create quantified formulas.
1580 A free variable with index n is bound when it occurs within the scope of n+1 quantified
1583 >>> Var(0, IntSort())
1585 >>> eq(Var(0, IntSort()), Var(0, BoolSort()))
1595 Create a real free variable. Free variables are used to create quantified formulas.
1596 They are also used to create polynomials.
1605 Create a list of Real free variables.
1606 The variables have ids: 0, 1, ..., n-1
1608 >>> x0, x1, x2, x3 = RealVarVector(4)
1612 return [
RealVar(i, ctx)
for i
in range(n)]
1625 """Try to cast `val` as a Boolean.
1627 >>> x = BoolSort().cast(True)
1637 if isinstance(val, bool):
1641 msg =
"True, False or Z3 Boolean expression expected. Received %s of type %s"
1643 if not self.
eq(val.sort()):
1644 _z3_assert(self.
eq(val.sort()),
"Value cannot be converted into a Z3 Boolean value")
1648 return isinstance(other, ArithSortRef)
1658 """All Boolean expressions are instances of this class."""
1664 if isinstance(other, BoolRef):
1665 other =
If(other, 1, 0)
1666 return If(self, 1, 0) + other
1675 """Create the Z3 expression `self * other`.
1677 if isinstance(other, int)
and other == 1:
1678 return If(self, 1, 0)
1679 if isinstance(other, int)
and other == 0:
1681 if isinstance(other, BoolRef):
1682 other =
If(other, 1, 0)
1683 return If(self, other, 0)
1686 return And(self, other)
1689 return Or(self, other)
1692 return Xor(self, other)
1708 """Return `True` if `a` is a Z3 Boolean expression.
1714 >>> is_bool(And(p, q))
1722 return isinstance(a, BoolRef)
1726 """Return `True` if `a` is the Z3 true expression.
1731 >>> is_true(simplify(p == p))
1736 >>> # True is a Python Boolean expression
1744 """Return `True` if `a` is the Z3 false expression.
1751 >>> is_false(BoolVal(False))
1758 """Return `True` if `a` is a Z3 and expression.
1760 >>> p, q = Bools('p q')
1761 >>> is_and(And(p, q))
1763 >>> is_and(Or(p, q))
1770 """Return `True` if `a` is a Z3 or expression.
1772 >>> p, q = Bools('p q')
1775 >>> is_or(And(p, q))
1782 """Return `True` if `a` is a Z3 implication expression.
1784 >>> p, q = Bools('p q')
1785 >>> is_implies(Implies(p, q))
1787 >>> is_implies(And(p, q))
1794 """Return `True` if `a` is a Z3 not expression.
1806 """Return `True` if `a` is a Z3 equality expression.
1808 >>> x, y = Ints('x y')
1816 """Return `True` if `a` is a Z3 distinct expression.
1818 >>> x, y, z = Ints('x y z')
1819 >>> is_distinct(x == y)
1821 >>> is_distinct(Distinct(x, y, z))
1828 """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.
1832 >>> p = Const('p', BoolSort())
1835 >>> r = Function('r', IntSort(), IntSort(), BoolSort())
1838 >>> is_bool(r(0, 1))
1846 """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.
1850 >>> is_true(BoolVal(True))
1854 >>> is_false(BoolVal(False))
1865 """Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.
1877 """Return a tuple of Boolean constants.
1879 `names` is a single string containing all names separated by blank spaces.
1880 If `ctx=None`, then the global context is used.
1882 >>> p, q, r = Bools('p q r')
1883 >>> And(p, Or(q, r))
1887 if isinstance(names, str):
1888 names = names.split(
" ")
1889 return [
Bool(name, ctx)
for name
in names]
1893 """Return a list of Boolean constants of size `sz`.
1895 The constants are named using the given prefix.
1896 If `ctx=None`, then the global context is used.
1898 >>> P = BoolVector('p', 3)
1902 And(p__0, p__1, p__2)
1904 return [
Bool(
"%s__%s" % (prefix, i))
for i
in range(sz)]
1908 """Return a fresh Boolean constant in the given context using the given prefix.
1910 If `ctx=None`, then the global context is used.
1912 >>> b1 = FreshBool()
1913 >>> b2 = FreshBool()
1922 """Create a Z3 implies expression.
1924 >>> p, q = Bools('p q')
1936 """Create a Z3 Xor expression.
1938 >>> p, q = Bools('p q')
1941 >>> simplify(Xor(p, q))
1952 """Create a Z3 not expression or probe.
1957 >>> simplify(Not(Not(p)))
1978 """Return `True` if one of the elements of the given collection is a Z3 probe."""
1986 """Create a Z3 and-expression or and-probe.
1988 >>> p, q, r = Bools('p q r')
1991 >>> P = BoolVector('p', 5)
1993 And(p__0, p__1, p__2, p__3, p__4)
1997 last_arg = args[len(args) - 1]
1998 if isinstance(last_arg, Context):
1999 ctx = args[len(args) - 1]
2000 args = args[:len(args) - 1]
2001 elif len(args) == 1
and isinstance(args[0], AstVector):
2003 args = [a
for a
in args[0]]
2009 _z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression or probe")
2019 """Create a Z3 or-expression or or-probe.
2021 >>> p, q, r = Bools('p q r')
2024 >>> P = BoolVector('p', 5)
2026 Or(p__0, p__1, p__2, p__3, p__4)
2030 last_arg = args[len(args) - 1]
2031 if isinstance(last_arg, Context):
2032 ctx = args[len(args) - 1]
2033 args = args[:len(args) - 1]
2034 elif len(args) == 1
and isinstance(args[0], AstVector):
2036 args = [a
for a
in args[0]]
2042 _z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression or probe")
2058 """Patterns are hints for quantifier instantiation.
2070 """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.
2072 >>> f = Function('f', IntSort(), IntSort())
2074 >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
2076 ForAll(x, f(x) == 0)
2077 >>> q.num_patterns()
2079 >>> is_pattern(q.pattern(0))
2084 return isinstance(a, PatternRef)
2088 """Create a Z3 multi-pattern using the given expressions `*args`
2090 >>> f = Function('f', IntSort(), IntSort())
2091 >>> g = Function('g', IntSort(), IntSort())
2093 >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
2095 ForAll(x, f(x) != g(x))
2096 >>> q.num_patterns()
2098 >>> is_pattern(q.pattern(0))
2101 MultiPattern(f(Var(0)), g(Var(0)))
2104 _z3_assert(len(args) > 0,
"At least one argument expected")
2125 """Universally and Existentially quantified formulas."""
2134 """Return the Boolean sort or sort of Lambda."""
2140 """Return `True` if `self` is a universal quantifier.
2142 >>> f = Function('f', IntSort(), IntSort())
2144 >>> q = ForAll(x, f(x) == 0)
2147 >>> q = Exists(x, f(x) != 0)
2154 """Return `True` if `self` is an existential quantifier.
2156 >>> f = Function('f', IntSort(), IntSort())
2158 >>> q = ForAll(x, f(x) == 0)
2161 >>> q = Exists(x, f(x) != 0)
2168 """Return `True` if `self` is a lambda expression.
2170 >>> f = Function('f', IntSort(), IntSort())
2172 >>> q = Lambda(x, f(x))
2175 >>> q = Exists(x, f(x) != 0)
2182 """Return the Z3 expression `self[arg]`.
2189 """Return the weight annotation of `self`.
2191 >>> f = Function('f', IntSort(), IntSort())
2193 >>> q = ForAll(x, f(x) == 0)
2196 >>> q = ForAll(x, f(x) == 0, weight=10)
2203 """Return the skolem id of `self`.
2208 """Return the quantifier id of `self`.
2213 """Return the number of patterns (i.e., quantifier instantiation hints) in `self`.
2215 >>> f = Function('f', IntSort(), IntSort())
2216 >>> g = Function('g', IntSort(), IntSort())
2218 >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ])
2219 >>> q.num_patterns()
2225 """Return a pattern (i.e., quantifier instantiation hints) in `self`.
2227 >>> f = Function('f', IntSort(), IntSort())
2228 >>> g = Function('g', IntSort(), IntSort())
2230 >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ])
2231 >>> q.num_patterns()
2243 """Return the number of no-patterns."""
2247 """Return a no-pattern."""
2253 """Return the expression being quantified.
2255 >>> f = Function('f', IntSort(), IntSort())
2257 >>> q = ForAll(x, f(x) == 0)
2264 """Return the number of variables bounded by this quantifier.
2266 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2269 >>> q = ForAll([x, y], f(x, y) >= x)
2276 """Return a string representing a name used when displaying the quantifier.
2278 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2281 >>> q = ForAll([x, y], f(x, y) >= x)
2292 """Return the sort of a bound variable.
2294 >>> f = Function('f', IntSort(), RealSort(), IntSort())
2297 >>> q = ForAll([x, y], f(x, y) >= x)
2308 """Return a list containing a single element self.body()
2310 >>> f = Function('f', IntSort(), IntSort())
2312 >>> q = ForAll(x, f(x) == 0)
2316 return [self.
body()]
2320 """Return `True` if `a` is a Z3 quantifier.
2322 >>> f = Function('f', IntSort(), IntSort())
2324 >>> q = ForAll(x, f(x) == 0)
2325 >>> is_quantifier(q)
2327 >>> is_quantifier(f(x))
2330 return isinstance(a, QuantifierRef)
2333def _mk_quantifier(is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2338 _z3_assert(all([
is_expr(p)
for p
in no_patterns]),
"no patterns are Z3 expressions")
2349 _vs = (Ast * num_vars)()
2350 for i
in range(num_vars):
2352 _vs[i] = vs[i].as_ast()
2354 num_pats = len(patterns)
2355 _pats = (Pattern * num_pats)()
2356 for i
in range(num_pats):
2357 _pats[i] = patterns[i].ast
2364 num_no_pats, _no_pats,
2365 body.as_ast()), ctx)
2368def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2369 """Create a Z3 forall formula.
2371 The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.
2373 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2376 >>> ForAll([x, y], f(x, y) >= x)
2377 ForAll([x, y], f(x, y) >= x)
2378 >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
2379 ForAll([x, y], f(x, y) >= x)
2380 >>> ForAll([x, y], f(x, y) >= x, weight=10)
2381 ForAll([x, y], f(x, y) >= x)
2383 return _mk_quantifier(
True, vs, body, weight, qid, skid, patterns, no_patterns)
2386def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2387 """Create a Z3 exists formula.
2389 The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.
2392 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2395 >>> q = Exists([x, y], f(x, y) >= x, skid="foo")
2397 Exists([x, y], f(x, y) >= x)
2398 >>> is_quantifier(q)
2400 >>> r = Tactic('nnf')(q).as_expr()
2401 >>> is_quantifier(r)
2404 return _mk_quantifier(
False, vs, body, weight, qid, skid, patterns, no_patterns)
2408 """Create a Z3 lambda expression.
2410 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2411 >>> mem0 = Array('mem0', IntSort(), IntSort())
2412 >>> lo, hi, e, i = Ints('lo hi e i')
2413 >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
2415 Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
2421 _vs = (Ast * num_vars)()
2422 for i
in range(num_vars):
2424 _vs[i] = vs[i].as_ast()
2435 """Real and Integer sorts."""
2438 """Return `True` if `self` is of the sort Real.
2443 >>> (x + 1).is_real()
2449 return self.
kind() == Z3_REAL_SORT
2452 """Return `True` if `self` is of the sort Integer.
2457 >>> (x + 1).is_int()
2463 return self.
kind() == Z3_INT_SORT
2469 """Return `True` if `self` is a subsort of `other`."""
2473 """Try to cast `val` as an Integer or Real.
2475 >>> IntSort().cast(10)
2477 >>> is_int(IntSort().cast(10))
2481 >>> RealSort().cast(10)
2483 >>> is_real(RealSort().cast(10))
2492 if val_s.is_int()
and self.
is_real():
2494 if val_s.is_bool()
and self.
is_int():
2495 return If(val, 1, 0)
2496 if val_s.is_bool()
and self.
is_real():
2499 _z3_assert(
False,
"Z3 Integer/Real expression expected")
2506 msg =
"int, long, float, string (numeral), or Z3 Integer/Real expression expected. Got %s"
2511 """Return `True` if s is an arithmetical sort (type).
2513 >>> is_arith_sort(IntSort())
2515 >>> is_arith_sort(RealSort())
2517 >>> is_arith_sort(BoolSort())
2519 >>> n = Int('x') + 1
2520 >>> is_arith_sort(n.sort())
2523 return isinstance(s, ArithSortRef)
2527 """Integer and Real expressions."""
2530 """Return the sort (type) of the arithmetical expression `self`.
2534 >>> (Real('x') + 1).sort()
2540 """Return `True` if `self` is an integer expression.
2545 >>> (x + 1).is_int()
2548 >>> (x + y).is_int()
2554 """Return `True` if `self` is an real expression.
2559 >>> (x + 1).is_real()
2565 """Create the Z3 expression `self + other`.
2578 """Create the Z3 expression `other + self`.
2588 """Create the Z3 expression `self * other`.
2597 if isinstance(other, BoolRef):
2598 return If(other, self, 0)
2603 """Create the Z3 expression `other * self`.
2613 """Create the Z3 expression `self - other`.
2626 """Create the Z3 expression `other - self`.
2636 """Create the Z3 expression `self**other` (** is the power operator).
2643 >>> simplify(IntVal(2)**8)
2650 """Create the Z3 expression `other**self` (** is the power operator).
2657 >>> simplify(2**IntVal(8))
2664 """Create the Z3 expression `other/self`.
2687 """Create the Z3 expression `other/self`."""
2691 """Create the Z3 expression `other/self`.
2708 """Create the Z3 expression `other/self`."""
2712 """Create the Z3 expression `other%self`.
2718 >>> simplify(IntVal(10) % IntVal(3))
2723 _z3_assert(a.is_int(),
"Z3 integer expression expected")
2727 """Create the Z3 expression `other%self`.
2735 _z3_assert(a.is_int(),
"Z3 integer expression expected")
2739 """Return an expression representing `-self`.
2759 """Create the Z3 expression `other <= self`.
2761 >>> x, y = Ints('x y')
2772 """Create the Z3 expression `other < self`.
2774 >>> x, y = Ints('x y')
2785 """Create the Z3 expression `other > self`.
2787 >>> x, y = Ints('x y')
2798 """Create the Z3 expression `other >= self`.
2800 >>> x, y = Ints('x y')
2812 """Return `True` if `a` is an arithmetical expression.
2821 >>> is_arith(IntVal(1))
2829 return isinstance(a, ArithRef)
2833 """Return `True` if `a` is an integer expression.
2840 >>> is_int(IntVal(1))
2852 """Return `True` if `a` is a real expression.
2864 >>> is_real(RealVal(1))
2879 """Return `True` if `a` is an integer value of sort Int.
2881 >>> is_int_value(IntVal(1))
2885 >>> is_int_value(Int('x'))
2887 >>> n = Int('x') + 1
2892 >>> is_int_value(n.arg(1))
2894 >>> is_int_value(RealVal("1/3"))
2896 >>> is_int_value(RealVal(1))
2903 """Return `True` if `a` is rational value of sort Real.
2905 >>> is_rational_value(RealVal(1))
2907 >>> is_rational_value(RealVal("3/5"))
2909 >>> is_rational_value(IntVal(1))
2911 >>> is_rational_value(1)
2913 >>> n = Real('x') + 1
2916 >>> is_rational_value(n.arg(1))
2918 >>> is_rational_value(Real('x'))
2925 """Return `True` if `a` is an algebraic value of sort Real.
2927 >>> is_algebraic_value(RealVal("3/5"))
2929 >>> n = simplify(Sqrt(2))
2932 >>> is_algebraic_value(n)
2939 """Return `True` if `a` is an expression of the form b + c.
2941 >>> x, y = Ints('x y')
2951 """Return `True` if `a` is an expression of the form b * c.
2953 >>> x, y = Ints('x y')
2963 """Return `True` if `a` is an expression of the form b - c.
2965 >>> x, y = Ints('x y')
2975 """Return `True` if `a` is an expression of the form b / c.
2977 >>> x, y = Reals('x y')
2982 >>> x, y = Ints('x y')
2992 """Return `True` if `a` is an expression of the form b div c.
2994 >>> x, y = Ints('x y')
3004 """Return `True` if `a` is an expression of the form b % c.
3006 >>> x, y = Ints('x y')
3016 """Return `True` if `a` is an expression of the form b <= c.
3018 >>> x, y = Ints('x y')
3028 """Return `True` if `a` is an expression of the form b < c.
3030 >>> x, y = Ints('x y')
3040 """Return `True` if `a` is an expression of the form b >= c.
3042 >>> x, y = Ints('x y')
3052 """Return `True` if `a` is an expression of the form b > c.
3054 >>> x, y = Ints('x y')
3064 """Return `True` if `a` is an expression of the form IsInt(b).
3067 >>> is_is_int(IsInt(x))
3076 """Return `True` if `a` is an expression of the form ToReal(b).
3091 """Return `True` if `a` is an expression of the form ToInt(b).
3106 """Integer values."""
3109 """Return a Z3 integer numeral as a Python long (bignum) numeral.
3122 """Return a Z3 integer numeral as a Python string.
3130 """Return a Z3 integer numeral as a Python binary string.
3132 >>> v.as_binary_string()
3142 """Rational values."""
3145 """ Return the numerator of a Z3 rational numeral.
3147 >>> is_rational_value(RealVal("3/5"))
3149 >>> n = RealVal("3/5")
3152 >>> is_rational_value(Q(3,5))
3154 >>> Q(3,5).numerator()
3160 """ Return the denominator of a Z3 rational numeral.
3162 >>> is_rational_value(Q(3,5))
3171 """ Return the numerator as a Python long.
3173 >>> v = RealVal(10000000000)
3178 >>> v.numerator_as_long() + 1 == 10000000001
3184 """ Return the denominator as a Python long.
3186 >>> v = RealVal("1/3")
3189 >>> v.denominator_as_long()
3208 """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
3210 >>> v = RealVal("1/5")
3213 >>> v = RealVal("1/3")
3220 """Return a Z3 rational numeral as a Python string.
3229 """Return a Z3 rational as a Python Fraction object.
3231 >>> v = RealVal("1/5")
3242 """Algebraic irrational values."""
3245 """Return a Z3 rational number that approximates the algebraic number `self`.
3246 The result `r` is such that |r - self| <= 1/10^precision
3248 >>> x = simplify(Sqrt(2))
3250 6838717160008073720548335/4835703278458516698824704
3257 """Return a string representation of the algebraic number `self` in decimal notation
3258 using `prec` decimal places.
3260 >>> x = simplify(Sqrt(2))
3261 >>> x.as_decimal(10)
3263 >>> x.as_decimal(20)
3264 '1.41421356237309504880?'
3276 if isinstance(a, bool):
3280 if isinstance(a, float):
3282 if isinstance(a, str):
3287 _z3_assert(
False,
"Python bool, int, long or float expected")
3291 """Return the integer sort in the given context. If `ctx=None`, then the global context is used.
3295 >>> x = Const('x', IntSort())
3298 >>> x.sort() == IntSort()
3300 >>> x.sort() == BoolSort()
3308 """Return the real sort in the given context. If `ctx=None`, then the global context is used.
3312 >>> x = Const('x', RealSort())
3317 >>> x.sort() == RealSort()
3325 if isinstance(val, float):
3326 return str(int(val))
3327 elif isinstance(val, bool):
3337 """Return a Z3 integer value. If `ctx=None`, then the global context is used.
3349 """Return a Z3 real value.
3351 `val` may be a Python int, long, float or string representing a number in decimal or rational notation.
3352 If `ctx=None`, then the global context is used.
3356 >>> RealVal(1).sort()
3368 """Return a Z3 rational a/b.
3370 If `ctx=None`, then the global context is used.
3374 >>> RatVal(3,5).sort()
3378 _z3_assert(
_is_int(a)
or isinstance(a, str),
"First argument cannot be converted into an integer")
3379 _z3_assert(
_is_int(b)
or isinstance(b, str),
"Second argument cannot be converted into an integer")
3383def Q(a, b, ctx=None):
3384 """Return a Z3 rational a/b.
3386 If `ctx=None`, then the global context is used.
3397 """Return an integer constant named `name`. If `ctx=None`, then the global context is used.
3410 """Return a tuple of Integer constants.
3412 >>> x, y, z = Ints('x y z')
3417 if isinstance(names, str):
3418 names = names.split(
" ")
3419 return [
Int(name, ctx)
for name
in names]
3423 """Return a list of integer constants of size `sz`.
3425 >>> X = IntVector('x', 3)
3432 return [
Int(
"%s__%s" % (prefix, i), ctx)
for i
in range(sz)]
3436 """Return a fresh integer constant in the given context using the given prefix.
3450 """Return a real constant named `name`. If `ctx=None`, then the global context is used.
3463 """Return a tuple of real constants.
3465 >>> x, y, z = Reals('x y z')
3468 >>> Sum(x, y, z).sort()
3472 if isinstance(names, str):
3473 names = names.split(
" ")
3474 return [
Real(name, ctx)
for name
in names]
3478 """Return a list of real constants of size `sz`.
3480 >>> X = RealVector('x', 3)
3489 return [
Real(
"%s__%s" % (prefix, i), ctx)
for i
in range(sz)]
3493 """Return a fresh real constant in the given context using the given prefix.
3507 """ Return the Z3 expression ToReal(a).
3519 if isinstance(a, BoolRef):
3522 _z3_assert(a.is_int(),
"Z3 integer expression expected.")
3527 """ Return the Z3 expression ToInt(a).
3539 _z3_assert(a.is_real(),
"Z3 real expression expected.")
3545 """ Return the Z3 predicate IsInt(a).
3548 >>> IsInt(x + "1/2")
3550 >>> solve(IsInt(x + "1/2"), x > 0, x < 1)
3552 >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
3556 _z3_assert(a.is_real(),
"Z3 real expression expected.")
3562 """ Return a Z3 expression which represents the square root of a.
3575 """ Return a Z3 expression which represents the cubic root of a.
3594 """Bit-vector sort."""
3597 """Return the size (number of bits) of the bit-vector sort `self`.
3599 >>> b = BitVecSort(32)
3609 """Try to cast `val` as a Bit-Vector.
3611 >>> b = BitVecSort(32)
3614 >>> b.cast(10).sexpr()
3627 """Return True if `s` is a Z3 bit-vector sort.
3629 >>> is_bv_sort(BitVecSort(32))
3631 >>> is_bv_sort(IntSort())
3634 return isinstance(s, BitVecSortRef)
3638 """Bit-vector expressions."""
3641 """Return the sort of the bit-vector expression `self`.
3643 >>> x = BitVec('x', 32)
3646 >>> x.sort() == BitVecSort(32)
3652 """Return the number of bits of the bit-vector expression `self`.
3654 >>> x = BitVec('x', 32)
3657 >>> Concat(x, x).size()
3663 """Create the Z3 expression `self + other`.
3665 >>> x = BitVec('x', 32)
3666 >>> y = BitVec('y', 32)
3676 """Create the Z3 expression `other + self`.
3678 >>> x = BitVec('x', 32)
3686 """Create the Z3 expression `self * other`.
3688 >>> x = BitVec('x', 32)
3689 >>> y = BitVec('y', 32)
3699 """Create the Z3 expression `other * self`.
3701 >>> x = BitVec('x', 32)
3709 """Create the Z3 expression `self - other`.
3711 >>> x = BitVec('x', 32)
3712 >>> y = BitVec('y', 32)
3722 """Create the Z3 expression `other - self`.
3724 >>> x = BitVec('x', 32)
3732 """Create the Z3 expression bitwise-or `self | other`.
3734 >>> x = BitVec('x', 32)
3735 >>> y = BitVec('y', 32)
3745 """Create the Z3 expression bitwise-or `other | self`.
3747 >>> x = BitVec('x', 32)
3755 """Create the Z3 expression bitwise-and `self & other`.
3757 >>> x = BitVec('x', 32)
3758 >>> y = BitVec('y', 32)
3768 """Create the Z3 expression bitwise-or `other & self`.
3770 >>> x = BitVec('x', 32)
3778 """Create the Z3 expression bitwise-xor `self ^ other`.
3780 >>> x = BitVec('x', 32)
3781 >>> y = BitVec('y', 32)
3791 """Create the Z3 expression bitwise-xor `other ^ self`.
3793 >>> x = BitVec('x', 32)
3803 >>> x = BitVec('x', 32)
3810 """Return an expression representing `-self`.
3812 >>> x = BitVec('x', 32)
3821 """Create the Z3 expression bitwise-not `~self`.
3823 >>> x = BitVec('x', 32)
3832 """Create the Z3 expression (signed) division `self / other`.
3834 Use the function UDiv() for unsigned division.
3836 >>> x = BitVec('x', 32)
3837 >>> y = BitVec('y', 32)
3844 >>> UDiv(x, y).sexpr()
3851 """Create the Z3 expression (signed) division `self / other`."""
3855 """Create the Z3 expression (signed) division `other / self`.
3857 Use the function UDiv() for unsigned division.
3859 >>> x = BitVec('x', 32)
3862 >>> (10 / x).sexpr()
3863 '(bvsdiv #x0000000a x)'
3864 >>> UDiv(10, x).sexpr()
3865 '(bvudiv #x0000000a x)'
3871 """Create the Z3 expression (signed) division `other / self`."""
3875 """Create the Z3 expression (signed) mod `self % other`.
3877 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3879 >>> x = BitVec('x', 32)
3880 >>> y = BitVec('y', 32)
3887 >>> URem(x, y).sexpr()
3889 >>> SRem(x, y).sexpr()
3896 """Create the Z3 expression (signed) mod `other % self`.
3898 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3900 >>> x = BitVec('x', 32)
3903 >>> (10 % x).sexpr()
3904 '(bvsmod #x0000000a x)'
3905 >>> URem(10, x).sexpr()
3906 '(bvurem #x0000000a x)'
3907 >>> SRem(10, x).sexpr()
3908 '(bvsrem #x0000000a x)'
3914 """Create the Z3 expression (signed) `other <= self`.
3916 Use the function ULE() for unsigned less than or equal to.
3918 >>> x, y = BitVecs('x y', 32)
3921 >>> (x <= y).sexpr()
3923 >>> ULE(x, y).sexpr()
3930 """Create the Z3 expression (signed) `other < self`.
3932 Use the function ULT() for unsigned less than.
3934 >>> x, y = BitVecs('x y', 32)
3939 >>> ULT(x, y).sexpr()
3946 """Create the Z3 expression (signed) `other > self`.
3948 Use the function UGT() for unsigned greater than.
3950 >>> x, y = BitVecs('x y', 32)
3955 >>> UGT(x, y).sexpr()
3962 """Create the Z3 expression (signed) `other >= self`.
3964 Use the function UGE() for unsigned greater than or equal to.
3966 >>> x, y = BitVecs('x y', 32)
3969 >>> (x >= y).sexpr()
3971 >>> UGE(x, y).sexpr()
3978 """Create the Z3 expression (arithmetical) right shift `self >> other`
3980 Use the function LShR() for the right logical shift
3982 >>> x, y = BitVecs('x y', 32)
3985 >>> (x >> y).sexpr()
3987 >>> LShR(x, y).sexpr()
3991 >>> BitVecVal(4, 3).as_signed_long()
3993 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
3995 >>> simplify(BitVecVal(4, 3) >> 1)
3997 >>> simplify(LShR(BitVecVal(4, 3), 1))
3999 >>> simplify(BitVecVal(2, 3) >> 1)
4001 >>> simplify(LShR(BitVecVal(2, 3), 1))
4008 """Create the Z3 expression left shift `self << other`
4010 >>> x, y = BitVecs('x y', 32)
4013 >>> (x << y).sexpr()
4015 >>> simplify(BitVecVal(2, 3) << 1)
4022 """Create the Z3 expression (arithmetical) right shift `other` >> `self`.
4024 Use the function LShR() for the right logical shift
4026 >>> x = BitVec('x', 32)
4029 >>> (10 >> x).sexpr()
4030 '(bvashr #x0000000a x)'
4036 """Create the Z3 expression left shift `other << self`.
4038 Use the function LShR() for the right logical shift
4040 >>> x = BitVec('x', 32)
4043 >>> (10 << x).sexpr()
4044 '(bvshl #x0000000a x)'
4051 """Bit-vector values."""
4054 """Return a Z3 bit-vector numeral as a Python long (bignum) numeral.
4056 >>> v = BitVecVal(0xbadc0de, 32)
4059 >>> print("0x%.8x" % v.as_long())
4065 """Return a Z3 bit-vector numeral as a Python long (bignum) numeral.
4066 The most significant bit is assumed to be the sign.
4068 >>> BitVecVal(4, 3).as_signed_long()
4070 >>> BitVecVal(7, 3).as_signed_long()
4072 >>> BitVecVal(3, 3).as_signed_long()
4074 >>> BitVecVal(2**32 - 1, 32).as_signed_long()
4076 >>> BitVecVal(2**64 - 1, 64).as_signed_long()
4081 if val >= 2**(sz - 1):
4083 if val < -2**(sz - 1):
4094 """Return the Python value of a Z3 bit-vector numeral."""
4100 """Return `True` if `a` is a Z3 bit-vector expression.
4102 >>> b = BitVec('b', 32)
4110 return isinstance(a, BitVecRef)
4114 """Return `True` if `a` is a Z3 bit-vector numeral value.
4116 >>> b = BitVec('b', 32)
4119 >>> b = BitVecVal(10, 32)
4129 """Return the Z3 expression BV2Int(a).
4131 >>> b = BitVec('b', 3)
4132 >>> BV2Int(b).sort()
4137 >>> x > BV2Int(b, is_signed=False)
4139 >>> x > BV2Int(b, is_signed=True)
4140 x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
4141 >>> solve(x > BV2Int(b), b == 1, x < 3)
4145 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4152 """Return the z3 expression Int2BV(a, num_bits).
4153 It is a bit-vector of width num_bits and represents the
4154 modulo of a by 2^num_bits
4161 """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.
4163 >>> Byte = BitVecSort(8)
4164 >>> Word = BitVecSort(16)
4167 >>> x = Const('x', Byte)
4168 >>> eq(x, BitVec('x', 8))
4176 """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.
4178 >>> v = BitVecVal(10, 32)
4181 >>> print("0x%.8x" % v.as_long())
4193 """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
4194 If `ctx=None`, then the global context is used.
4196 >>> x = BitVec('x', 16)
4203 >>> word = BitVecSort(16)
4204 >>> x2 = BitVec('x', word)
4208 if isinstance(bv, BitVecSortRef):
4217 """Return a tuple of bit-vector constants of size bv.
4219 >>> x, y, z = BitVecs('x y z', 16)
4226 >>> Product(x, y, z)
4228 >>> simplify(Product(x, y, z))
4232 if isinstance(names, str):
4233 names = names.split(
" ")
4234 return [
BitVec(name, bv, ctx)
for name
in names]
4238 """Create a Z3 bit-vector concatenation expression.
4240 >>> v = BitVecVal(1, 4)
4241 >>> Concat(v, v+1, v)
4242 Concat(Concat(1, 1 + 1), 1)
4243 >>> simplify(Concat(v, v+1, v))
4245 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
4251 _z3_assert(sz >= 2,
"At least two arguments expected.")
4258 if is_seq(args[0])
or isinstance(args[0], str):
4261 _z3_assert(all([
is_seq(a)
for a
in args]),
"All arguments must be sequence expressions.")
4264 v[i] = args[i].as_ast()
4269 _z3_assert(all([
is_re(a)
for a
in args]),
"All arguments must be regular expressions.")
4272 v[i] = args[i].as_ast()
4276 _z3_assert(all([
is_bv(a)
for a
in args]),
"All arguments must be Z3 bit-vector expressions.")
4278 for i
in range(sz - 1):
4284 """Create a Z3 bit-vector extraction expression or sequence extraction expression.
4286 Extract is overloaded to work with both bit-vectors and sequences:
4288 **Bit-vector extraction**: Extract(high, low, bitvector)
4289 Extracts bits from position `high` down to position `low` (both inclusive).
4290 - high: int - the highest bit position to extract (0-indexed from right)
4291 - low: int - the lowest bit position to extract (0-indexed from right)
4292 - bitvector: BitVecRef - the bit-vector to extract from
4293 Returns a new bit-vector containing bits [high:low]
4295 **Sequence extraction**: Extract(sequence, offset, length)
4296 Extracts a subsequence starting at the given offset with the specified length.
4297 The functions SubString and SubSeq are redirected to this form of Extract.
4298 - sequence: SeqRef or str - the sequence to extract from
4299 - offset: int - the starting position (0-indexed)
4300 - length: int - the number of elements to extract
4301 Returns a new sequence containing the extracted subsequence
4303 >>> # Bit-vector extraction examples
4304 >>> x = BitVec('x', 8)
4305 >>> Extract(6, 2, x) # Extract bits 6 down to 2 (5 bits total)
4307 >>> Extract(6, 2, x).sort() # Result is a 5-bit vector
4309 >>> Extract(7, 0, x) # Extract all 8 bits
4311 >>> Extract(3, 3, x) # Extract single bit at position 3
4314 >>> # Sequence extraction examples
4315 >>> s = StringVal("hello")
4316 >>> Extract(s, 1, 3) # Extract 3 characters starting at position 1
4317 str.substr("hello", 1, 3)
4318 >>> simplify(Extract(StringVal("abcd"), 2, 1)) # Extract 1 character at position 2
4320 >>> simplify(Extract(StringVal("abcd"), 0, 2)) # Extract first 2 characters
4323 if isinstance(high, str):
4330 _z3_assert(low <= high,
"First argument must be greater than or equal to second argument")
4332 "First and second arguments must be non negative integers")
4333 _z3_assert(
is_bv(a),
"Third argument must be a Z3 bit-vector expression")
4339 _z3_assert(
is_bv(a)
or is_bv(b),
"First or second argument must be a Z3 bit-vector expression")
4343 """Create the Z3 expression (unsigned) `other <= self`.
4345 Use the operator <= for signed less than or equal to.
4347 >>> x, y = BitVecs('x y', 32)
4350 >>> (x <= y).sexpr()
4352 >>> ULE(x, y).sexpr()
4361 """Create the Z3 expression (unsigned) `other < self`.
4363 Use the operator < for signed less than.
4365 >>> x, y = BitVecs('x y', 32)
4370 >>> ULT(x, y).sexpr()
4379 """Create the Z3 expression (unsigned) `other >= self`.
4381 Use the operator >= for signed greater than or equal to.
4383 >>> x, y = BitVecs('x y', 32)
4386 >>> (x >= y).sexpr()
4388 >>> UGE(x, y).sexpr()
4397 """Create the Z3 expression (unsigned) `other > self`.
4399 Use the operator > for signed greater than.
4401 >>> x, y = BitVecs('x y', 32)
4406 >>> UGT(x, y).sexpr()
4415 """Create the Z3 expression (unsigned) division `self / other`.
4417 Use the operator / for signed division.
4419 >>> x = BitVec('x', 32)
4420 >>> y = BitVec('y', 32)
4423 >>> UDiv(x, y).sort()
4427 >>> UDiv(x, y).sexpr()
4436 """Create the Z3 expression (unsigned) remainder `self % other`.
4438 Use the operator % for signed modulus, and SRem() for signed remainder.
4440 >>> x = BitVec('x', 32)
4441 >>> y = BitVec('y', 32)
4444 >>> URem(x, y).sort()
4448 >>> URem(x, y).sexpr()
4457 """Create the Z3 expression signed remainder.
4459 Use the operator % for signed modulus, and URem() for unsigned remainder.
4461 >>> x = BitVec('x', 32)
4462 >>> y = BitVec('y', 32)
4465 >>> SRem(x, y).sort()
4469 >>> SRem(x, y).sexpr()
4478 """Create the Z3 expression logical right shift.
4480 Use the operator >> for the arithmetical right shift.
4482 >>> x, y = BitVecs('x y', 32)
4485 >>> (x >> y).sexpr()
4487 >>> LShR(x, y).sexpr()
4491 >>> BitVecVal(4, 3).as_signed_long()
4493 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
4495 >>> simplify(BitVecVal(4, 3) >> 1)
4497 >>> simplify(LShR(BitVecVal(4, 3), 1))
4499 >>> simplify(BitVecVal(2, 3) >> 1)
4501 >>> simplify(LShR(BitVecVal(2, 3), 1))
4510 """Return an expression representing `a` rotated to the left `b` times.
4512 >>> a, b = BitVecs('a b', 16)
4513 >>> RotateLeft(a, b)
4515 >>> simplify(RotateLeft(a, 0))
4517 >>> simplify(RotateLeft(a, 16))
4526 """Return an expression representing `a` rotated to the right `b` times.
4528 >>> a, b = BitVecs('a b', 16)
4529 >>> RotateRight(a, b)
4531 >>> simplify(RotateRight(a, 0))
4533 >>> simplify(RotateRight(a, 16))
4542 """Return a bit-vector expression with `n` extra sign-bits.
4544 >>> x = BitVec('x', 16)
4545 >>> n = SignExt(8, x)
4552 >>> v0 = BitVecVal(2, 2)
4557 >>> v = simplify(SignExt(6, v0))
4562 >>> print("%.x" % v.as_long())
4567 _z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4572 """Return a bit-vector expression with `n` extra zero-bits.
4574 >>> x = BitVec('x', 16)
4575 >>> n = ZeroExt(8, x)
4582 >>> v0 = BitVecVal(2, 2)
4587 >>> v = simplify(ZeroExt(6, v0))
4595 _z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4600 """Return an expression representing `n` copies of `a`.
4602 >>> x = BitVec('x', 8)
4603 >>> n = RepeatBitVec(4, x)
4608 >>> v0 = BitVecVal(10, 4)
4609 >>> print("%.x" % v0.as_long())
4611 >>> v = simplify(RepeatBitVec(4, v0))
4614 >>> print("%.x" % v.as_long())
4619 _z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4624 """Return the reduction-and expression of `a`."""
4626 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4631 """Return the reduction-or expression of `a`."""
4633 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4638 """A predicate the determines that bit-vector addition does not overflow"""
4645 """A predicate the determines that signed bit-vector addition does not underflow"""
4652 """A predicate the determines that bit-vector subtraction does not overflow"""
4659 """A predicate the determines that bit-vector subtraction does not underflow"""
4666 """A predicate the determines that bit-vector signed division does not overflow"""
4673 """A predicate the determines that bit-vector unary negation does not overflow"""
4675 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4680 """A predicate the determines that bit-vector multiplication does not overflow"""
4687 """A predicate the determines that bit-vector signed multiplication does not underflow"""
4703 """Return the domain of the array sort `self`.
4705 >>> A = ArraySort(IntSort(), BoolSort())
4712 """Return the domain of the array sort `self`.
4717 """Return the range of the array sort `self`.
4719 >>> A = ArraySort(IntSort(), BoolSort())
4727 """Array expressions. """
4730 """Return the array sort of the array expression `self`.
4732 >>> a = Array('a', IntSort(), BoolSort())
4739 """Shorthand for `self.sort().domain()`.
4741 >>> a = Array('a', IntSort(), BoolSort())
4748 """Shorthand for self.sort().domain_n(i)`."""
4752 """Shorthand for `self.sort().range()`.
4754 >>> a = Array('a', IntSort(), BoolSort())
4761 """Return the Z3 expression `self[arg]`.
4763 >>> a = Array('a', IntSort(), BoolSort())
4777 if isinstance(arg, tuple):
4778 args = [ar.sort().domain_n(i).cast(arg[i])
for i
in range(len(arg))]
4781 arg = ar.sort().domain().cast(arg)
4790 """Return `True` if `a` is a Z3 array expression.
4792 >>> a = Array('a', IntSort(), IntSort())
4795 >>> is_array(Store(a, 0, 1))
4800 return isinstance(a, ArrayRef)
4804 """Return `True` if `a` is a Z3 constant array.
4806 >>> a = K(IntSort(), 10)
4807 >>> is_const_array(a)
4809 >>> a = Array('a', IntSort(), IntSort())
4810 >>> is_const_array(a)
4817 """Return `True` if `a` is a Z3 constant array.
4819 >>> a = K(IntSort(), 10)
4822 >>> a = Array('a', IntSort(), IntSort())
4830 """Return `True` if `a` is a Z3 map array expression.
4832 >>> f = Function('f', IntSort(), IntSort())
4833 >>> b = Array('b', IntSort(), IntSort())
4846 """Return `True` if `a` is a Z3 default array expression.
4847 >>> d = Default(K(IntSort(), 10))
4851 return is_app_of(a, Z3_OP_ARRAY_DEFAULT)
4855 """Return the function declaration associated with a Z3 map array expression.
4857 >>> f = Function('f', IntSort(), IntSort())
4858 >>> b = Array('b', IntSort(), IntSort())
4860 >>> eq(f, get_map_func(a))
4864 >>> get_map_func(a)(0)
4879 """Return the Z3 array sort with the given domain and range sorts.
4881 >>> A = ArraySort(IntSort(), BoolSort())
4888 >>> AA = ArraySort(IntSort(), A)
4890 Array(Int, Array(Int, Bool))
4894 _z3_assert(len(sig) > 1,
"At least two arguments expected")
4895 arity = len(sig) - 1
4901 _z3_assert(s.ctx == r.ctx,
"Context mismatch")
4905 dom = (Sort * arity)()
4906 for i
in range(arity):
4912 """Return an array constant named `name` with the given domain and range sorts.
4914 >>> a = Array('a', IntSort(), IntSort())
4926 """Return a Z3 store array expression.
4928 >>> a = Array('a', IntSort(), IntSort())
4929 >>> i, v = Ints('i v')
4930 >>> s = Update(a, i, v)
4933 >>> prove(s[i] == v)
4936 >>> prove(Implies(i != j, s[j] == a[j]))
4944 raise Z3Exception(
"array update requires index and value arguments")
4948 i = a.sort().domain().cast(i)
4949 v = a.sort().range().cast(v)
4951 v = a.sort().range().cast(args[-1])
4952 idxs = [a.sort().domain_n(i).cast(args[i])
for i
in range(len(args)-1)]
4958 """ Return a default value for array expression.
4959 >>> b = K(IntSort(), 1)
4960 >>> prove(Default(b) == 1)
4969 """Return a Z3 store array expression.
4971 >>> a = Array('a', IntSort(), IntSort())
4972 >>> i, v = Ints('i v')
4973 >>> s = Store(a, i, v)
4976 >>> prove(s[i] == v)
4979 >>> prove(Implies(i != j, s[j] == a[j]))
4986 """Return a Z3 select array expression.
4988 >>> a = Array('a', IntSort(), IntSort())
4992 >>> eq(Select(a, i), a[i])
5002 """Return a Z3 map array expression.
5004 >>> f = Function('f', IntSort(), IntSort(), IntSort())
5005 >>> a1 = Array('a1', IntSort(), IntSort())
5006 >>> a2 = Array('a2', IntSort(), IntSort())
5007 >>> b = Map(f, a1, a2)
5010 >>> prove(b[0] == f(a1[0], a2[0]))
5015 _z3_assert(len(args) > 0,
"At least one Z3 array expression expected")
5018 _z3_assert(len(args) == f.arity(),
"Number of arguments mismatch")
5025 """Return a Z3 constant array expression.
5027 >>> a = K(IntSort(), 10)
5047 """Return extensionality index for one-dimensional arrays.
5048 >> a, b = Consts('a b', SetSort(IntSort()))
5058 """Return `True` if `a` is a Z3 array select application.
5060 >>> a = Array('a', IntSort(), IntSort())
5071 """Return `True` if `a` is a Z3 array store application.
5073 >>> a = Array('a', IntSort(), IntSort())
5076 >>> is_store(Store(a, 0, 1))
5089 """ Create a set sort over element sort s"""
5094 """Create the empty set
5095 >>> EmptySet(IntSort())
5103 """Create the full set
5104 >>> FullSet(IntSort())
5112 """ Take the union of sets
5113 >>> a = Const('a', SetSort(IntSort()))
5114 >>> b = Const('b', SetSort(IntSort()))
5125 """ Take the union of sets
5126 >>> a = Const('a', SetSort(IntSort()))
5127 >>> b = Const('b', SetSort(IntSort()))
5128 >>> SetIntersect(a, b)
5138 """ Add element e to set s
5139 >>> a = Const('a', SetSort(IntSort()))
5149 """ Remove element e to set s
5150 >>> a = Const('a', SetSort(IntSort()))
5160 """ The complement of set s
5161 >>> a = Const('a', SetSort(IntSort()))
5162 >>> SetComplement(a)
5170 """ The set difference of a and b
5171 >>> a = Const('a', SetSort(IntSort()))
5172 >>> b = Const('b', SetSort(IntSort()))
5173 >>> SetDifference(a, b)
5181 """ Check if e is a member of set s
5182 >>> a = Const('a', SetSort(IntSort()))
5192 """ Check if a is a subset of b
5193 >>> a = Const('a', SetSort(IntSort()))
5194 >>> b = Const('b', SetSort(IntSort()))
5209 """Return `True` if acc is pair of the form (String, Datatype or Sort). """
5210 if not isinstance(acc, tuple):
5214 return isinstance(acc[0], str)
and (isinstance(acc[1], Datatype)
or is_sort(acc[1]))
5218 """Helper class for declaring Z3 datatypes.
5220 >>> List = Datatype('List')
5221 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5222 >>> List.declare('nil')
5223 >>> List = List.create()
5224 >>> # List is now a Z3 declaration
5227 >>> List.cons(10, List.nil)
5229 >>> List.cons(10, List.nil).sort()
5231 >>> cons = List.cons
5235 >>> n = cons(1, cons(0, nil))
5237 cons(1, cons(0, nil))
5238 >>> simplify(cdr(n))
5240 >>> simplify(car(n))
5256 _z3_assert(isinstance(name, str),
"String expected")
5257 _z3_assert(isinstance(rec_name, str),
"String expected")
5260 "Valid list of accessors expected. An accessor is a pair of the form (String, Datatype|Sort)",
5265 """Declare constructor named `name` with the given accessors `args`.
5266 Each accessor is a pair `(name, sort)`, where `name` is a string and `sort` a Z3 sort
5267 or a reference to the datatypes being declared.
5269 In the following example `List.declare('cons', ('car', IntSort()), ('cdr', List))`
5270 declares the constructor named `cons` that builds a new List using an integer and a List.
5271 It also declares the accessors `car` and `cdr`. The accessor `car` extracts the integer
5272 of a `cons` cell, and `cdr` the list of a `cons` cell. After all constructors were declared,
5273 we use the method create() to create the actual datatype in Z3.
5275 >>> List = Datatype('List')
5276 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5277 >>> List.declare('nil')
5278 >>> List = List.create()
5281 _z3_assert(isinstance(name, str),
"String expected")
5282 _z3_assert(name !=
"",
"Constructor name cannot be empty")
5289 """Create a Z3 datatype based on the constructors declared using the method `declare()`.
5291 The function `CreateDatatypes()` must be used to define mutually recursive datatypes.
5293 >>> List = Datatype('List')
5294 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5295 >>> List.declare('nil')
5296 >>> List = List.create()
5299 >>> List.cons(10, List.nil)
5306 """Auxiliary object used to create Z3 datatypes."""
5313 if self.
ctx.ref()
is not None and Z3_del_constructor
is not None:
5318 """Auxiliary object used to create Z3 datatypes."""
5325 if self.
ctx.ref()
is not None and Z3_del_constructor_list
is not None:
5330 """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.
5332 In the following example we define a Tree-List using two mutually recursive datatypes.
5334 >>> TreeList = Datatype('TreeList')
5335 >>> Tree = Datatype('Tree')
5336 >>> # Tree has two constructors: leaf and node
5337 >>> Tree.declare('leaf', ('val', IntSort()))
5338 >>> # a node contains a list of trees
5339 >>> Tree.declare('node', ('children', TreeList))
5340 >>> TreeList.declare('nil')
5341 >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
5342 >>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
5343 >>> Tree.val(Tree.leaf(10))
5345 >>> simplify(Tree.val(Tree.leaf(10)))
5347 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
5349 node(cons(leaf(10), cons(leaf(20), nil)))
5350 >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
5351 >>> simplify(n2 == n1)
5353 >>> simplify(TreeList.car(Tree.children(n2)) == n1)
5358 _z3_assert(len(ds) > 0,
"At least one Datatype must be specified")
5359 _z3_assert(all([isinstance(d, Datatype)
for d
in ds]),
"Arguments must be Datatypes")
5360 _z3_assert(all([d.ctx == ds[0].ctx
for d
in ds]),
"Context mismatch")
5361 _z3_assert(all([d.constructors != []
for d
in ds]),
"Non-empty Datatypes expected")
5364 names = (Symbol * num)()
5365 out = (Sort * num)()
5366 clists = (ConstructorList * num)()
5368 for i
in range(num):
5371 num_cs = len(d.constructors)
5372 cs = (Constructor * num_cs)()
5373 for j
in range(num_cs):
5374 c = d.constructors[j]
5379 fnames = (Symbol * num_fs)()
5380 sorts = (Sort * num_fs)()
5381 refs = (ctypes.c_uint * num_fs)()
5382 for k
in range(num_fs):
5386 if isinstance(ftype, Datatype):
5389 ds.count(ftype) == 1,
5390 "One and only one occurrence of each datatype is expected",
5393 refs[k] = ds.index(ftype)
5397 sorts[k] = ftype.ast
5406 for i
in range(num):
5408 num_cs = dref.num_constructors()
5409 for j
in range(num_cs):
5410 cref = dref.constructor(j)
5411 cref_name = cref.name()
5412 cref_arity = cref.arity()
5413 if cref.arity() == 0:
5415 setattr(dref, cref_name, cref)
5416 rref = dref.recognizer(j)
5417 setattr(dref,
"is_" + cref_name, rref)
5418 for k
in range(cref_arity):
5419 aref = dref.accessor(j, k)
5420 setattr(dref, aref.name(), aref)
5422 return tuple(result)
5426 """Datatype sorts."""
5429 """Return the number of constructors in the given Z3 datatype.
5431 >>> List = Datatype('List')
5432 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5433 >>> List.declare('nil')
5434 >>> List = List.create()
5435 >>> # List is now a Z3 declaration
5436 >>> List.num_constructors()
5442 """Return a constructor of the datatype `self`.
5444 >>> List = Datatype('List')
5445 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5446 >>> List.declare('nil')
5447 >>> List = List.create()
5448 >>> # List is now a Z3 declaration
5449 >>> List.num_constructors()
5451 >>> List.constructor(0)
5453 >>> List.constructor(1)
5461 """In Z3, each constructor has an associated recognizer predicate.
5463 If the constructor is named `name`, then the recognizer `is_name`.
5465 >>> List = Datatype('List')
5466 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5467 >>> List.declare('nil')
5468 >>> List = List.create()
5469 >>> # List is now a Z3 declaration
5470 >>> List.num_constructors()
5472 >>> List.recognizer(0)
5474 >>> List.recognizer(1)
5476 >>> simplify(List.is_nil(List.cons(10, List.nil)))
5478 >>> simplify(List.is_cons(List.cons(10, List.nil)))
5480 >>> l = Const('l', List)
5481 >>> simplify(List.is_cons(l))
5489 """In Z3, each constructor has 0 or more accessor.
5490 The number of accessors is equal to the arity of the constructor.
5492 >>> List = Datatype('List')
5493 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5494 >>> List.declare('nil')
5495 >>> List = List.create()
5496 >>> List.num_constructors()
5498 >>> List.constructor(0)
5500 >>> num_accs = List.constructor(0).arity()
5503 >>> List.accessor(0, 0)
5505 >>> List.accessor(0, 1)
5507 >>> List.constructor(1)
5509 >>> num_accs = List.constructor(1).arity()
5523 """Datatype expressions."""
5526 """Return the datatype sort of the datatype expression `self`."""
5530 """Create a reference to a sort that was declared, or will be declared, as a recursive datatype.
5533 name: name of the datatype sort
5534 params: optional list/tuple of sort parameters for parametric datatypes
5535 ctx: Z3 context (optional)
5538 >>> # Non-parametric datatype
5539 >>> TreeRef = DatatypeSort('Tree')
5540 >>> # Parametric datatype with one parameter
5541 >>> ListIntRef = DatatypeSort('List', [IntSort()])
5542 >>> # Parametric datatype with multiple parameters
5543 >>> PairRef = DatatypeSort('Pair', [IntSort(), BoolSort()])
5546 if params
is None or len(params) == 0:
5549 _params = (Sort * len(params))()
5550 for i
in range(len(params)):
5551 _params[i] = params[i].ast
5555 """Create a named tuple sort base on a set of underlying sorts
5557 >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
5560 projects = [(
"project%d" % i, sorts[i])
for i
in range(len(sorts))]
5561 tuple.declare(name, *projects)
5562 tuple = tuple.create()
5563 return tuple, tuple.constructor(0), [tuple.accessor(0, i)
for i
in range(len(sorts))]
5567 """Create a named tagged union sort base on a set of underlying sorts
5569 >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
5572 for i
in range(len(sorts)):
5573 sum.declare(
"inject%d" % i, (
"project%d" % i, sorts[i]))
5575 return sum, [(sum.constructor(i), sum.accessor(i, 0))
for i
in range(len(sorts))]
5579 """Return a new enumeration sort named `name` containing the given values.
5581 The result is a pair (sort, list of constants).
5583 >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
5586 _z3_assert(isinstance(name, str),
"Name must be a string")
5587 _z3_assert(all([isinstance(v, str)
for v
in values]),
"Enumeration sort values must be strings")
5588 _z3_assert(len(values) > 0,
"At least one value expected")
5591 _val_names = (Symbol * num)()
5592 for i
in range(num):
5593 _val_names[i] =
to_symbol(values[i], ctx)
5594 _values = (FuncDecl * num)()
5595 _testers = (FuncDecl * num)()
5599 for i
in range(num):
5601 V = [a()
for a
in V]
5612 """Set of parameters used to configure Solvers, Tactics and Simplifiers in Z3.
5614 Consider using the function `args2params` to create instances of this object.
5629 if self.
ctx.ref()
is not None and Z3_params_dec_ref
is not None:
5633 """Set parameter name with value val."""
5635 _z3_assert(isinstance(name, str),
"parameter name must be a string")
5637 if isinstance(val, bool):
5641 elif isinstance(val, float):
5643 elif isinstance(val, str):
5653 _z3_assert(isinstance(ds, ParamDescrsRef),
"parameter description set expected")
5658 """Convert python arguments into a Z3_params object.
5659 A ':' is added to the keywords, and '_' is replaced with '-'
5661 >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
5662 (params model true relevancy 2 elim_and true)
5665 _z3_assert(len(arguments) % 2 == 0,
"Argument list must have an even number of elements.")
5681 """Set of parameter descriptions for Solvers, Tactics and Simplifiers in Z3.
5685 _z3_assert(isinstance(descr, ParamDescrs),
"parameter description object expected")
5691 return ParamsDescrsRef(self.
descr, self.
ctx)
5694 if self.
ctx.ref()
is not None and Z3_param_descrs_dec_ref
is not None:
5698 """Return the size of in the parameter description `self`.
5703 """Return the size of in the parameter description `self`.
5708 """Return the i-th parameter name in the parameter description `self`.
5713 """Return the kind of the parameter named `n`.
5718 """Return the documentation string of the parameter named `n`.
5739 """Goal is a collection of constraints we want to find a solution or show to be unsatisfiable (infeasible).
5741 Goals are processed using Tactics. A Tactic transforms a goal into a set of subgoals.
5742 A goal has a solution if one of its subgoals has a solution.
5743 A goal is unsatisfiable if all subgoals are unsatisfiable.
5746 def __init__(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None):
5749 "If goal is different from None, then ctx must be also different from None")
5752 if self.
goal is None:
5757 if self.
goal is not None and self.
ctx.ref()
is not None and Z3_goal_dec_ref
is not None:
5761 """Return the depth of the goal `self`.
5762 The depth corresponds to the number of tactics applied to `self`.
5764 >>> x, y = Ints('x y')
5766 >>> g.add(x == 0, y >= x + 1)
5769 >>> r = Then('simplify', 'solve-eqs')(g)
5770 >>> # r has 1 subgoal
5779 """Return `True` if `self` contains the `False` constraints.
5781 >>> x, y = Ints('x y')
5783 >>> g.inconsistent()
5785 >>> g.add(x == 0, x == 1)
5788 >>> g.inconsistent()
5790 >>> g2 = Tactic('propagate-values')(g)[0]
5791 >>> g2.inconsistent()
5797 """Return the precision (under-approximation, over-approximation, or precise) of the goal `self`.
5800 >>> g.prec() == Z3_GOAL_PRECISE
5802 >>> x, y = Ints('x y')
5803 >>> g.add(x == y + 1)
5804 >>> g.prec() == Z3_GOAL_PRECISE
5806 >>> t = With(Tactic('add-bounds'), add_bound_lower=0, add_bound_upper=10)
5809 [x == y + 1, x <= 10, x >= 0, y <= 10, y >= 0]
5810 >>> g2.prec() == Z3_GOAL_PRECISE
5812 >>> g2.prec() == Z3_GOAL_UNDER
5818 """Alias for `prec()`.
5821 >>> g.precision() == Z3_GOAL_PRECISE
5827 """Return the number of constraints in the goal `self`.
5832 >>> x, y = Ints('x y')
5833 >>> g.add(x == 0, y > x)
5840 """Return the number of constraints in the goal `self`.
5845 >>> x, y = Ints('x y')
5846 >>> g.add(x == 0, y > x)
5853 """Return a constraint in the goal `self`.
5856 >>> x, y = Ints('x y')
5857 >>> g.add(x == 0, y > x)
5866 """Return a constraint in the goal `self`.
5869 >>> x, y = Ints('x y')
5870 >>> g.add(x == 0, y > x)
5876 if arg >= len(self):
5878 return self.
get(arg)
5881 """Assert constraints into the goal.
5885 >>> g.assert_exprs(x > 0, x < 2)
5900 >>> g.append(x > 0, x < 2)
5911 >>> g.insert(x > 0, x < 2)
5922 >>> g.add(x > 0, x < 2)
5929 """Retrieve model from a satisfiable goal
5930 >>> a, b = Ints('a b')
5932 >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
5933 >>> t = Then(Tactic('split-clause'), Tactic('solve-eqs'))
5936 [Or(b == 0, b == 1), Not(0 <= b)]
5938 [Or(b == 0, b == 1), Not(1 <= b)]
5939 >>> # Remark: the subgoal r[0] is unsatisfiable
5940 >>> # Creating a solver for solving the second subgoal
5947 >>> # Model s.model() does not assign a value to `a`
5948 >>> # It is a model for subgoal `r[1]`, but not for goal `g`
5949 >>> # The method convert_model creates a model for `g` from a model for `r[1]`.
5950 >>> r[1].convert_model(s.model())
5954 _z3_assert(isinstance(model, ModelRef),
"Z3 Model expected")
5958 return obj_to_string(self)
5961 """Return a textual representation of the s-expression representing the goal."""
5965 """Return a textual representation of the goal in DIMACS format."""
5969 """Copy goal `self` to context `target`.
5977 >>> g2 = g.translate(c2)
5980 >>> g.ctx == main_ctx()
5984 >>> g2.ctx == main_ctx()
5988 _z3_assert(isinstance(target, Context),
"target must be a context")
5998 """Return a new simplified goal.
6000 This method is essentially invoking the simplify tactic.
6004 >>> g.add(x + 1 >= 2)
6007 >>> g2 = g.simplify()
6010 >>> # g was not modified
6015 return t.apply(self, *arguments, **keywords)[0]
6018 """Return goal `self` as a single Z3 expression.
6037 return And([self.
get(i)
for i
in range(len(self))], self.
ctx)
6047 """A collection (vector) of ASTs."""
6056 assert ctx
is not None
6061 if self.
vector is not None and self.
ctx.ref()
is not None and Z3_ast_vector_dec_ref
is not None:
6065 """Return the size of the vector `self`.
6070 >>> A.push(Int('x'))
6071 >>> A.push(Int('x'))
6078 """Return the AST at position `i`.
6081 >>> A.push(Int('x') + 1)
6082 >>> A.push(Int('y'))
6089 if isinstance(i, int):
6097 elif isinstance(i, slice):
6099 for ii
in range(*i.indices(self.
__len__())):
6107 """Update AST at position `i`.
6110 >>> A.push(Int('x') + 1)
6111 >>> A.push(Int('y'))
6123 """Add `v` in the end of the vector.
6128 >>> A.push(Int('x'))
6135 """Resize the vector to `sz` elements.
6141 >>> for i in range(10): A[i] = Int('x')
6148 """Return `True` if the vector contains `item`.
6171 """Copy vector `self` to context `other_ctx`.
6177 >>> B = A.translate(c2)
6193 return obj_to_string(self)
6196 """Return a textual representation of the s-expression representing the vector."""
6207 """A mapping from ASTs to ASTs."""
6216 assert ctx
is not None
6224 if self.
map is not None and self.
ctx.ref()
is not None and Z3_ast_map_dec_ref
is not None:
6228 """Return the size of the map.
6234 >>> M[x] = IntVal(1)
6241 """Return `True` if the map contains key `key`.
6254 """Retrieve the value associated with key `key`.
6265 """Add/Update key `k` with value `v`.
6274 >>> M[x] = IntVal(1)
6284 """Remove the entry associated with key `k`.
6298 """Remove all entries from the map.
6303 >>> M[x+x] = IntVal(1)
6313 """Return an AstVector containing all keys in the map.
6318 >>> M[x+x] = IntVal(1)
6332 """Store the value of the interpretation of a function in a particular point."""
6343 if self.
ctx.ref()
is not None and Z3_func_entry_dec_ref
is not None:
6347 """Return the number of arguments in the given entry.
6349 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6351 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6356 >>> f_i.num_entries()
6358 >>> e = f_i.entry(0)
6365 """Return the value of argument `idx`.
6367 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6369 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6374 >>> f_i.num_entries()
6376 >>> e = f_i.entry(0)
6387 ... except IndexError:
6388 ... print("index error")
6396 """Return the value of the function at point `self`.
6398 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6400 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6405 >>> f_i.num_entries()
6407 >>> e = f_i.entry(0)
6418 """Return entry `self` as a Python list.
6419 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6421 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6426 >>> f_i.num_entries()
6428 >>> e = f_i.entry(0)
6433 args.append(self.
value())
6441 """Stores the interpretation of a function in a Z3 model."""
6446 if self.
f is not None:
6450 if self.
f is not None and self.
ctx.ref()
is not None and Z3_func_interp_dec_ref
is not None:
6455 Return the `else` value for a function interpretation.
6456 Return None if Z3 did not specify the `else` value for
6459 >>> f = Function('f', IntSort(), IntSort())
6461 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6467 >>> m[f].else_value()
6477 """Return the number of entries/points in the function interpretation `self`.
6479 >>> f = Function('f', IntSort(), IntSort())
6481 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6487 >>> m[f].num_entries()
6493 """Return the number of arguments for each entry in the function interpretation `self`.
6495 >>> f = Function('f', IntSort(), IntSort())
6497 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6507 """Return an entry at position `idx < self.num_entries()` in the function interpretation `self`.
6509 >>> f = Function('f', IntSort(), IntSort())
6511 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6517 >>> m[f].num_entries()
6527 """Copy model 'self' to context 'other_ctx'.
6538 """Return the function interpretation as a Python list.
6539 >>> f = Function('f', IntSort(), IntSort())
6541 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6555 return obj_to_string(self)
6559 """Model/Solution of a satisfiability problem (aka system of constraints)."""
6562 assert ctx
is not None
6568 if self.
ctx.ref()
is not None and Z3_model_dec_ref
is not None:
6572 return obj_to_string(self)
6575 """Return a textual representation of the s-expression representing the model."""
6578 def eval(self, t, model_completion=False):
6579 """Evaluate the expression `t` in the model `self`.
6580 If `model_completion` is enabled, then a default interpretation is automatically added
6581 for symbols that do not have an interpretation in the model `self`.
6585 >>> s.add(x > 0, x < 2)
6598 >>> m.eval(y, model_completion=True)
6600 >>> # Now, m contains an interpretation for y
6607 raise Z3Exception(
"failed to evaluate expression in the model")
6610 """Alias for `eval`.
6614 >>> s.add(x > 0, x < 2)
6618 >>> m.evaluate(x + 1)
6620 >>> m.evaluate(x == 1)
6623 >>> m.evaluate(y + x)
6627 >>> m.evaluate(y, model_completion=True)
6629 >>> # Now, m contains an interpretation for y
6630 >>> m.evaluate(y + x)
6633 return self.
eval(t, model_completion)
6636 """Return the number of constant and function declarations in the model `self`.
6638 >>> f = Function('f', IntSort(), IntSort())
6641 >>> s.add(x > 0, f(x) != x)
6650 return num_consts + num_funcs
6653 """Return the interpretation for a given declaration or constant.
6655 >>> f = Function('f', IntSort(), IntSort())
6658 >>> s.add(x > 0, x < 2, f(x) == 0)
6668 _z3_assert(isinstance(decl, FuncDeclRef)
or is_const(decl),
"Z3 declaration expected")
6672 if decl.arity() == 0:
6674 if _r.value
is None:
6690 sz = fi.num_entries()
6694 e =
Store(e, fe.arg_value(0), fe.value())
6705 """Return the number of uninterpreted sorts that contain an interpretation in the model `self`.
6707 >>> A = DeclareSort('A')
6708 >>> a, b = Consts('a b', A)
6720 """Return the uninterpreted sort at position `idx` < self.num_sorts().
6722 >>> A = DeclareSort('A')
6723 >>> B = DeclareSort('B')
6724 >>> a1, a2 = Consts('a1 a2', A)
6725 >>> b1, b2 = Consts('b1 b2', B)
6727 >>> s.add(a1 != a2, b1 != b2)
6743 """Return all uninterpreted sorts that have an interpretation in the model `self`.
6745 >>> A = DeclareSort('A')
6746 >>> B = DeclareSort('B')
6747 >>> a1, a2 = Consts('a1 a2', A)
6748 >>> b1, b2 = Consts('b1 b2', B)
6750 >>> s.add(a1 != a2, b1 != b2)
6760 """Return the interpretation for the uninterpreted sort `s` in the model `self`.
6762 >>> A = DeclareSort('A')
6763 >>> a, b = Consts('a b', A)
6769 >>> m.get_universe(A)
6773 _z3_assert(isinstance(s, SortRef),
"Z3 sort expected")
6780 """If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned.
6781 If `idx` is a declaration, then the actual interpretation is returned.
6783 The elements can be retrieved using position or the actual declaration.
6785 >>> f = Function('f', IntSort(), IntSort())
6788 >>> s.add(x > 0, x < 2, f(x) == 0)
6802 >>> for d in m: print("%s -> %s" % (d, m[d]))
6807 if idx >= len(self):
6810 if (idx < num_consts):
6814 if isinstance(idx, FuncDeclRef):
6818 if isinstance(idx, SortRef):
6821 _z3_assert(
False,
"Integer, Z3 declaration, or Z3 constant expected")
6825 """Return a list with all symbols that have an interpretation in the model `self`.
6826 >>> f = Function('f', IntSort(), IntSort())
6829 >>> s.add(x > 0, x < 2, f(x) == 0)
6844 """Update the interpretation of a constant"""
6847 if is_func_decl(x)
and x.arity() != 0
and isinstance(value, FuncInterp):
6851 for i
in range(value.num_entries()):
6856 v.push(e.arg_value(j))
6861 raise Z3Exception(
"Expecting 0-ary function or constant expression")
6866 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6869 _z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
6874 """Perform model-based projection on fml with respect to vars.
6875 Assume that the model satisfies fml. Then compute a projection fml_p, such
6876 that vars do not occur free in fml_p, fml_p is true in the model and
6877 fml_p => exists vars . fml
6879 ctx = self.
ctx.ref()
6880 _vars = (Ast * len(vars))()
6881 for i
in range(len(vars)):
6882 _vars[i] = vars[i].as_ast()
6886 """Perform model-based projection, but also include realizer terms for the projected variables"""
6887 ctx = self.
ctx.ref()
6888 _vars = (Ast * len(vars))()
6889 for i
in range(len(vars)):
6890 _vars[i] = vars[i].as_ast()
6892 result = Z3_qe_model_project_with_witness(ctx, self.
model, len(vars), _vars, fml.ast, defs.map)
6907 for k, v
in eval.items():
6908 mdl.update_value(k, v)
6913 """Return true if n is a Z3 expression of the form (_ as-array f)."""
6914 return isinstance(n, ExprRef)
and Z3_is_as_array(n.ctx.ref(), n.as_ast())
6918 """Return the function declaration f associated with a Z3 expression of the form (_ as-array f)."""
6931 """Statistics for `Solver.check()`."""
6942 if self.
ctx.ref()
is not None and Z3_stats_dec_ref
is not None:
6949 out.write(u(
'<table border="1" cellpadding="2" cellspacing="0">'))
6952 out.write(u(
'<tr style="background-color:#CFCFCF">'))
6955 out.write(u(
"<tr>"))
6957 out.write(u(
"<td>%s</td><td>%s</td></tr>" % (k, v)))
6958 out.write(u(
"</table>"))
6959 return out.getvalue()
6964 """Return the number of statistical counters.
6967 >>> s = Then('simplify', 'nlsat').solver()
6971 >>> st = s.statistics()
6978 """Return the value of statistical counter at position `idx`. The result is a pair (key, value).
6981 >>> s = Then('simplify', 'nlsat').solver()
6985 >>> st = s.statistics()
6989 ('nlsat propagations', 2)
6991 ('nlsat restarts', 1)
6993 if idx >= len(self):
7002 """Return the list of statistical counters.
7005 >>> s = Then('simplify', 'nlsat').solver()
7009 >>> st = s.statistics()
7014 """Return the value of a particular statistical counter.
7017 >>> s = Then('simplify', 'nlsat').solver()
7021 >>> st = s.statistics()
7022 >>> st.get_key_value('nlsat propagations')
7025 for idx
in range(len(self)):
7031 raise Z3Exception(
"unknown key")
7034 """Access the value of statistical using attributes.
7036 Remark: to access a counter containing blank spaces (e.g., 'nlsat propagations'),
7037 we should use '_' (e.g., 'nlsat_propagations').
7040 >>> s = Then('simplify', 'nlsat').solver()
7044 >>> st = s.statistics()
7045 >>> st.nlsat_propagations
7050 key = name.replace(
"_",
" ")
7054 raise AttributeError
7064 """Represents the result of a satisfiability check: sat, unsat, unknown.
7070 >>> isinstance(r, CheckSatResult)
7081 return isinstance(other, CheckSatResult)
and self.
r == other.r
7084 return not self.
__eq__(other)
7088 if self.
r == Z3_L_TRUE:
7090 elif self.
r == Z3_L_FALSE:
7091 return "<b>unsat</b>"
7093 return "<b>unknown</b>"
7095 if self.
r == Z3_L_TRUE:
7097 elif self.
r == Z3_L_FALSE:
7103 in_html = in_html_mode()
7106 set_html_mode(in_html)
7117 Solver API provides methods for implementing the main SMT 2.0 commands:
7118 push, pop, check, get-model, etc.
7121 def __init__(self, solver=None, ctx=None, logFile=None):
7122 assert solver
is None or ctx
is not None
7131 if logFile
is not None:
7132 self.
set(
"smtlib2_log", logFile)
7135 if self.
solver is not None and self.
ctx.ref()
is not None and Z3_solver_dec_ref
is not None:
7146 """Set a configuration option.
7147 The method `help()` return a string containing all available options.
7150 >>> # The option MBQI can be set using three different approaches.
7151 >>> s.set(mbqi=True)
7152 >>> s.set('MBQI', True)
7153 >>> s.set(':mbqi', True)
7159 """Create a backtracking point.
7181 """Backtrack \\c num backtracking points.
7203 """Return the current number of backtracking points.
7221 """Remove all asserted constraints and backtracking points created using `push()`.
7235 """Assert constraints into the solver.
7239 >>> s.assert_exprs(x > 0, x < 2)
7246 if isinstance(arg, Goal)
or isinstance(arg, AstVector):
7254 """Assert constraints into the solver.
7258 >>> s.add(x > 0, x < 2)
7269 """Assert constraints into the solver.
7273 >>> s.append(x > 0, x < 2)
7280 """Assert constraints into the solver.
7284 >>> s.insert(x > 0, x < 2)
7291 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
7293 If `p` is a string, it will be automatically converted into a Boolean constant.
7298 >>> s.set(unsat_core=True)
7299 >>> s.assert_and_track(x > 0, 'p1')
7300 >>> s.assert_and_track(x != 1, 'p2')
7301 >>> s.assert_and_track(x < 0, p3)
7302 >>> print(s.check())
7304 >>> c = s.unsat_core()
7314 if isinstance(p, str):
7316 _z3_assert(isinstance(a, BoolRef),
"Boolean expression expected")
7321 """Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
7327 >>> s.add(x > 0, x < 2)
7330 >>> s.model().eval(x)
7336 >>> s.add(2**x == 4)
7342 num = len(assumptions)
7343 _assumptions = (Ast * num)()
7344 for i
in range(num):
7345 _assumptions[i] = s.cast(assumptions[i]).as_ast()
7350 """Return a model for the last `check()`.
7352 This function raises an exception if
7353 a model is not available (e.g., last `check()` returned unsat).
7357 >>> s.add(a + 2 == 0)
7366 raise Z3Exception(
"model is not available")
7369 """Import model converter from other into the current solver"""
7370 Z3_solver_import_model_converter(self.ctx.ref(), other.solver, self.solver)
7372 def interrupt(self):
7373 """Interrupt the execution of the solver object.
7374 Remarks: This ensures that the interrupt applies only
7375 to the given solver object and it applies only if it is running.
7377 Z3_solver_interrupt(self.ctx.ref(), self.solver)
7379 def unsat_core(self):
7380 """Return a subset (as an AST vector) of the assumptions provided to the last check().
7382 These are the assumptions Z3 used in the unsatisfiability proof.
7383 Assumptions are available in Z3. They are used to extract unsatisfiable cores.
7384 They may be also used to "retract" assumptions. Note that, assumptions are not really
7385 "soft constraints", but they can be used to implement them.
7387 >>> p1, p2, p3 = Bools('p1 p2 p3')
7388 >>> x, y = Ints('x y')
7390 >>> s.add(Implies(p1, x > 0))
7391 >>> s.add(Implies(p2, y > x))
7392 >>> s.add(Implies(p2, y < 1))
7393 >>> s.add(Implies(p3, y > -3))
7394 >>> s.check(p1, p2, p3)
7396 >>> core = s.unsat_core()
7405 >>> # "Retracting" p2
7409 return AstVector(Z3_solver_get_unsat_core(self.ctx.ref(), self.solver), self.ctx)
7411 def consequences(self, assumptions, variables):
7412 """Determine fixed values for the variables based on the solver state and assumptions.
7414 >>> a, b, c, d = Bools('a b c d')
7415 >>> s.add(Implies(a,b), Implies(b, c))
7416 >>> s.consequences([a],[b,c,d])
7417 (sat, [Implies(a, b), Implies(a, c)])
7418 >>> s.consequences([Not(c),d],[a,b,c,d])
7419 (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
7421 if isinstance(assumptions, list):
7422 _asms = AstVector(None, self.ctx)
7423 for a in assumptions:
7426 if isinstance(variables, list):
7427 _vars = AstVector(None, self.ctx)
7431 _z3_assert(isinstance(assumptions, AstVector), "ast vector expected")
7432 _z3_assert(isinstance(variables, AstVector), "ast vector expected")
7433 consequences = AstVector(None, self.ctx)
7434 r = Z3_solver_get_consequences(self.ctx.ref(), self.solver, assumptions.vector,
7435 variables.vector, consequences.vector)
7436 sz = len(consequences)
7437 consequences = [consequences[i] for i in range(sz)]
7438 return CheckSatResult(r), consequences
7440 def from_file(self, filename):
7441 """Parse assertions from a file"""
7442 Z3_solver_from_file(self.ctx.ref(), self.solver, filename)
7444 def from_string(self, s):
7445 """Parse assertions from a string"""
7446 Z3_solver_from_string(self.ctx.ref(), self.solver, s)
7448 def cube(self, vars=None):
7450 The method takes an optional set of variables that restrict which
7451 variables may be used as a starting point for cubing.
7452 If vars is not None, then the first case split is based on a variable in
7455 self.cube_vs = AstVector(None, self.ctx)
7456 if vars is not None:
7458 self.cube_vs.push(v)
7460 lvl = self.backtrack_level
7461 self.backtrack_level = 4000000000
7462 r = AstVector(Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
7463 if (len(r) == 1 and is_false(r[0])):
7469 def cube_vars(self):
7470 """Access the set of variables that were touched by the most recently generated cube.
7471 This set of variables can be used as a starting point for additional cubes.
7472 The idea is that variables that appear in clauses that are reduced by the most recent
7473 cube are likely more useful to cube on."""
7477 """Retrieve congruence closure root of the term t relative to the current search state
7478 The function primarily works for SimpleSolver. Terms and variables that are
7479 eliminated during pre-processing are not visible to the congruence closure.
7481 t = _py2expr(t, self.ctx)
7482 return _to_expr_ref(Z3_solver_congruence_root(self.ctx.ref(), self.solver, t.ast), self.ctx)
7485 """Retrieve congruence closure sibling of the term t relative to the current search state
7486 The function primarily works for SimpleSolver. Terms and variables that are
7487 eliminated during pre-processing are not visible to the congruence closure.
7489 t = _py2expr(t, self.ctx)
7490 return _to_expr_ref(Z3_solver_congruence_next(self.ctx.ref(), self.solver, t.ast), self.ctx)
7492 def explain_congruent(self, a, b):
7493 """Explain congruence of a and b relative to the current search state"""
7494 a = _py2expr(a, self.ctx)
7495 b = _py2expr(b, self.ctx)
7496 return _to_expr_ref(Z3_solver_congruence_explain(self.ctx.ref(), self.solver, a.ast, b.ast), self.ctx)
7499 def solve_for(self, ts):
7500 """Retrieve a solution for t relative to linear equations maintained in the current state."""
7501 vars = AstVector(ctx=self.ctx);
7502 terms = AstVector(ctx=self.ctx);
7503 guards = AstVector(ctx=self.ctx);
7505 t = _py2expr(t, self.ctx)
7507 Z3_solver_solve_for(self.ctx.ref(), self.solver, vars.vector, terms.vector, guards.vector)
7508 return [(vars[i], terms[i], guards[i]) for i in range(len(vars))]
7512 """Return a proof for the last `check()`. Proof construction must be enabled."""
7513 return _to_expr_ref(Z3_solver_get_proof(self.ctx.ref(), self.solver), self.ctx)
7515 def assertions(self):
7516 """Return an AST vector containing all added constraints.
7527 return AstVector(Z3_solver_get_assertions(self.ctx.ref(), self.solver), self.ctx)
7530 """Return an AST vector containing all currently inferred units.
7532 return AstVector(Z3_solver_get_units(self.ctx.ref(), self.solver), self.ctx)
7534 def non_units(self):
7535 """Return an AST vector containing all atomic formulas in solver state that are not units.
7537 return AstVector(Z3_solver_get_non_units(self.ctx.ref(), self.solver), self.ctx)
7539 def trail_levels(self):
7540 """Return trail and decision levels of the solver state after a check() call.
7542 trail = self.trail()
7543 levels = (ctypes.c_uint * len(trail))()
7544 Z3_solver_get_levels(self.ctx.ref(), self.solver, trail.vector, len(trail), levels)
7545 return trail, levels
7547 def set_initial_value(self, var, value):
7548 """initialize the solver's state by setting the initial value of var to value
7551 value = s.cast(value)
7552 Z3_solver_set_initial_value(self.ctx.ref(), self.solver, var.ast, value.ast)
7555 """Return trail of the solver state after a check() call.
7557 return AstVector(Z3_solver_get_trail(self.ctx.ref(), self.solver), self.ctx)
7559 def statistics(self):
7560 """Return statistics for the last `check()`.
7562 >>> s = SimpleSolver()
7567 >>> st = s.statistics()
7568 >>> st.get_key_value('final checks')
7575 return Statistics(Z3_solver_get_statistics(self.ctx.ref(), self.solver), self.ctx)
7577 def reason_unknown(self):
7578 """Return a string describing why the last `check()` returned `unknown`.
7581 >>> s = SimpleSolver()
7582 >>> s.add(x == 2**x)
7585 >>> s.reason_unknown()
7586 '(incomplete (theory arithmetic))'
7588 return Z3_solver_get_reason_unknown(self.ctx.ref(), self.solver)
7591 """Display a string describing all available options."""
7592 print(Z3_solver_get_help(self.ctx.ref(), self.solver))
7594 def param_descrs(self):
7595 """Return the parameter description set."""
7596 return ParamDescrsRef(Z3_solver_get_param_descrs(self.ctx.ref(), self.solver), self.ctx)
7599 """Return a formatted string with all added constraints."""
7600 return obj_to_string(self)
7602 def translate(self, target):
7603 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
7607 >>> s1 = Solver(ctx=c1)
7608 >>> s2 = s1.translate(c2)
7611 _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
7612 solver = Z3_solver_translate(self.ctx.ref(), self.solver, target.ref())
7613 return Solver(solver, target)
7616 return self.translate(self.ctx)
7618 def __deepcopy__(self, memo={}):
7619 return self.translate(self.ctx)
7622 """Return a formatted string (in Lisp-like format) with all added constraints.
7623 We say the string is in s-expression format.
7631 return Z3_solver_to_string(self.ctx.ref(), self.solver)
7633 def dimacs(self, include_names=True):
7634 """Return a textual representation of the solver in DIMACS format."""
7635 return Z3_solver_to_dimacs_string(self.ctx.ref(), self.solver, include_names)
7638 """return SMTLIB2 formatted benchmark for solver's assertions"""
7639 es = self.assertions()
7645 for i in range(sz1):
7646 v[i] = es[i].as_ast()
7648 e = es[sz1].as_ast()
7650 e = BoolVal(True, self.ctx).as_ast()
7651 return Z3_benchmark_to_smtlib_string(
7652 self.ctx.ref(), "benchmark generated from python API", "", "unknown", "", sz1, v, e,
7656def SolverFor(logic, ctx=None, logFile=None):
7657 """Create a solver customized for the given logic.
7659 The parameter `logic` is a string. It should be contains
7660 the name of a SMT-LIB logic.
7661 See http://www.smtlib.org/ for the name of all available logics.
7663 >>> s = SolverFor("QF_LIA")
7673 logic = to_symbol(logic)
7674 return Solver(Z3_mk_solver_for_logic(ctx.ref(), logic), ctx, logFile)
7677def SimpleSolver(ctx=None, logFile=None):
7678 """Return a simple general purpose solver with limited amount of preprocessing.
7680 >>> s = SimpleSolver()
7687 return Solver(Z3_mk_simple_solver(ctx.ref()), ctx, logFile)
7689#########################################
7693#########################################
7696class Fixedpoint(Z3PPObject):
7697 """Fixedpoint API provides methods for solving with recursive predicates"""
7699 def __init__(self, fixedpoint=None, ctx=None):
7700 assert fixedpoint is None or ctx is not None
7701 self.ctx = _get_ctx(ctx)
7702 self.fixedpoint = None
7703 if fixedpoint is None:
7704 self.fixedpoint = Z3_mk_fixedpoint(self.ctx.ref())
7706 self.fixedpoint = fixedpoint
7707 Z3_fixedpoint_inc_ref(self.ctx.ref(), self.fixedpoint)
7710 def __deepcopy__(self, memo={}):
7711 return FixedPoint(self.fixedpoint, self.ctx)
7714 if self.fixedpoint is not None and self.ctx.ref() is not None and Z3_fixedpoint_dec_ref is not None:
7715 Z3_fixedpoint_dec_ref(self.ctx.ref(), self.fixedpoint)
7717 def set(self, *args, **keys):
7718 """Set a configuration option. The method `help()` return a string containing all available options.
7720 p = args2params(args, keys, self.ctx)
7721 Z3_fixedpoint_set_params(self.ctx.ref(), self.fixedpoint, p.params)
7724 """Display a string describing all available options."""
7725 print(Z3_fixedpoint_get_help(self.ctx.ref(), self.fixedpoint))
7727 def param_descrs(self):
7728 """Return the parameter description set."""
7729 return ParamDescrsRef(Z3_fixedpoint_get_param_descrs(self.ctx.ref(), self.fixedpoint), self.ctx)
7731 def assert_exprs(self, *args):
7732 """Assert constraints as background axioms for the fixedpoint solver."""
7733 args = _get_args(args)
7734 s = BoolSort(self.ctx)
7736 if isinstance(arg, Goal) or isinstance(arg, AstVector):
7738 f = self.abstract(f)
7739 Z3_fixedpoint_assert(self.ctx.ref(), self.fixedpoint, f.as_ast())
7742 arg = self.abstract(arg)
7743 Z3_fixedpoint_assert(self.ctx.ref(), self.fixedpoint, arg.as_ast())
7745 def add(self, *args):
7746 """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
7747 self.assert_exprs(*args)
7749 def __iadd__(self, fml):
7753 def append(self, *args):
7754 """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
7755 self.assert_exprs(*args)
7757 def insert(self, *args):
7758 """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
7759 self.assert_exprs(*args)
7761 def add_rule(self, head, body=None, name=None):
7762 """Assert rules defining recursive predicates to the fixedpoint solver.
7765 >>> s = Fixedpoint()
7766 >>> s.register_relation(a.decl())
7767 >>> s.register_relation(b.decl())
7775 name = to_symbol(name, self.ctx)
7777 head = self.abstract(head)
7778 Z3_fixedpoint_add_rule(self.ctx.ref(), self.fixedpoint, head.as_ast(), name)
7780 body = _get_args(body)
7781 f = self.abstract(Implies(And(body, self.ctx), head))
7782 Z3_fixedpoint_add_rule(self.ctx.ref(), self.fixedpoint, f.as_ast(), name)
7784 def rule(self, head, body=None, name=None):
7785 """Assert rules defining recursive predicates to the fixedpoint solver. Alias for add_rule."""
7786 self.add_rule(head, body, name)
7788 def fact(self, head, name=None):
7789 """Assert facts defining recursive predicates to the fixedpoint solver. Alias for add_rule."""
7790 self.add_rule(head, None, name)
7792 def query(self, *query):
7793 """Query the fixedpoint engine whether formula is derivable.
7794 You can also pass an tuple or list of recursive predicates.
7796 query = _get_args(query)
7798 if sz >= 1 and isinstance(query[0], FuncDeclRef):
7799 _decls = (FuncDecl * sz)()
7804 r = Z3_fixedpoint_query_relations(self.ctx.ref(), self.fixedpoint, sz, _decls)
7809 query = And(query, self.ctx)
7810 query = self.abstract(query, False)
7811 r = Z3_fixedpoint_query(self.ctx.ref(), self.fixedpoint, query.as_ast())
7812 return CheckSatResult(r)
7814 def query_from_lvl(self, lvl, *query):
7815 """Query the fixedpoint engine whether formula is derivable starting at the given query level.
7817 query = _get_args(query)
7819 if sz >= 1 and isinstance(query[0], FuncDecl):
7820 _z3_assert(False, "unsupported")
7826 query = self.abstract(query, False)
7827 r = Z3_fixedpoint_query_from_lvl(self.ctx.ref(), self.fixedpoint, query.as_ast(), lvl)
7828 return CheckSatResult(r)
7830 def update_rule(self, head, body, name):
7834 name = to_symbol(name, self.ctx)
7835 body = _get_args(body)
7836 f = self.abstract(Implies(And(body, self.ctx), head))
7837 Z3_fixedpoint_update_rule(self.ctx.ref(), self.fixedpoint, f.as_ast(), name)
7839 def get_answer(self):
7840 """Retrieve answer from last query call."""
7841 r = Z3_fixedpoint_get_answer(self.ctx.ref(), self.fixedpoint)
7842 return _to_expr_ref(r, self.ctx)
7844 def get_ground_sat_answer(self):
7845 """Retrieve a ground cex from last query call."""
7846 r = Z3_fixedpoint_get_ground_sat_answer(self.ctx.ref(), self.fixedpoint)
7847 return _to_expr_ref(r, self.ctx)
7849 def get_rules_along_trace(self):
7850 """retrieve rules along the counterexample trace"""
7851 return AstVector(Z3_fixedpoint_get_rules_along_trace(self.ctx.ref(), self.fixedpoint), self.ctx)
7853 def get_rule_names_along_trace(self):
7854 """retrieve rule names along the counterexample trace"""
7855 # this is a hack as I don't know how to return a list of symbols from C++;
7856 # obtain names as a single string separated by semicolons
7857 names = _symbol2py(self.ctx, Z3_fixedpoint_get_rule_names_along_trace(self.ctx.ref(), self.fixedpoint))
7858 # split into individual names
7859 return names.split(";")
7861 def get_num_levels(self, predicate):
7862 """Retrieve number of levels used for predicate in PDR engine"""
7863 return Z3_fixedpoint_get_num_levels(self.ctx.ref(), self.fixedpoint, predicate.ast)
7865 def get_cover_delta(self, level, predicate):
7866 """Retrieve properties known about predicate for the level'th unfolding.
7867 -1 is treated as the limit (infinity)
7869 r = Z3_fixedpoint_get_cover_delta(self.ctx.ref(), self.fixedpoint, level, predicate.ast)
7870 return _to_expr_ref(r, self.ctx)
7872 def add_cover(self, level, predicate, property):
7873 """Add property to predicate for the level'th unfolding.
7874 -1 is treated as infinity (infinity)
7876 Z3_fixedpoint_add_cover(self.ctx.ref(), self.fixedpoint, level, predicate.ast, property.ast)
7878 def register_relation(self, *relations):
7879 """Register relation as recursive"""
7880 relations = _get_args(relations)
7882 Z3_fixedpoint_register_relation(self.ctx.ref(), self.fixedpoint, f.ast)
7884 def set_predicate_representation(self, f, *representations):
7885 """Control how relation is represented"""
7886 representations = _get_args(representations)
7887 representations = [to_symbol(s) for s in representations]
7888 sz = len(representations)
7889 args = (Symbol * sz)()
7891 args[i] = representations[i]
7892 Z3_fixedpoint_set_predicate_representation(self.ctx.ref(), self.fixedpoint, f.ast, sz, args)
7894 def parse_string(self, s):
7895 """Parse rules and queries from a string"""
7896 return AstVector(Z3_fixedpoint_from_string(self.ctx.ref(), self.fixedpoint, s), self.ctx)
7898 def parse_file(self, f):
7899 """Parse rules and queries from a file"""
7900 return AstVector(Z3_fixedpoint_from_file(self.ctx.ref(), self.fixedpoint, f), self.ctx)
7902 def get_rules(self):
7903 """retrieve rules that have been added to fixedpoint context"""
7904 return AstVector(Z3_fixedpoint_get_rules(self.ctx.ref(), self.fixedpoint), self.ctx)
7906 def get_assertions(self):
7907 """retrieve assertions that have been added to fixedpoint context"""
7908 return AstVector(Z3_fixedpoint_get_assertions(self.ctx.ref(), self.fixedpoint), self.ctx)
7911 """Return a formatted string with all added rules and constraints."""
7915 """Return a formatted string (in Lisp-like format) with all added constraints.
7916 We say the string is in s-expression format.
7918 return Z3_fixedpoint_to_string(self.ctx.ref(), self.fixedpoint, 0, (Ast * 0)())
7920 def to_string(self, queries):
7921 """Return a formatted string (in Lisp-like format) with all added constraints.
7922 We say the string is in s-expression format.
7923 Include also queries.
7925 args, len = _to_ast_array(queries)
7926 return Z3_fixedpoint_to_string(self.ctx.ref(), self.fixedpoint, len, args)
7928 def statistics(self):
7929 """Return statistics for the last `query()`.
7931 return Statistics(Z3_fixedpoint_get_statistics(self.ctx.ref(), self.fixedpoint), self.ctx)
7933 def reason_unknown(self):
7934 """Return a string describing why the last `query()` returned `unknown`.
7936 return Z3_fixedpoint_get_reason_unknown(self.ctx.ref(), self.fixedpoint)
7938 def declare_var(self, *vars):
7939 """Add variable or several variables.
7940 The added variable or variables will be bound in the rules
7943 vars = _get_args(vars)
7947 def abstract(self, fml, is_forall=True):
7951 return ForAll(self.vars, fml)
7953 return Exists(self.vars, fml)
7956#########################################
7960#########################################
7962class FiniteDomainSortRef(SortRef):
7963 """Finite domain sort."""
7966 """Return the size of the finite domain sort"""
7967 r = (ctypes.c_ulonglong * 1)()
7968 if Z3_get_finite_domain_sort_size(self.ctx_ref(), self.ast, r):
7971 raise Z3Exception("Failed to retrieve finite domain sort size")
7974def FiniteDomainSort(name, sz, ctx=None):
7975 """Create a named finite domain sort of a given size sz"""
7976 if not isinstance(name, Symbol):
7977 name = to_symbol(name)
7979 return FiniteDomainSortRef(Z3_mk_finite_domain_sort(ctx.ref(), name, sz), ctx)
7982def is_finite_domain_sort(s):
7983 """Return True if `s` is a Z3 finite-domain sort.
7985 >>> is_finite_domain_sort(FiniteDomainSort('S', 100))
7987 >>> is_finite_domain_sort(IntSort())
7990 return isinstance(s, FiniteDomainSortRef)
7993class FiniteDomainRef(ExprRef):
7994 """Finite-domain expressions."""
7997 """Return the sort of the finite-domain expression `self`."""
7998 return FiniteDomainSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
8000 def as_string(self):
8001 """Return a Z3 floating point expression as a Python string."""
8002 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
8005def is_finite_domain(a):
8006 """Return `True` if `a` is a Z3 finite-domain expression.
8008 >>> s = FiniteDomainSort('S', 100)
8009 >>> b = Const('b', s)
8010 >>> is_finite_domain(b)
8012 >>> is_finite_domain(Int('x'))
8015 return isinstance(a, FiniteDomainRef)
8018class FiniteDomainNumRef(FiniteDomainRef):
8019 """Integer values."""
8022 """Return a Z3 finite-domain numeral as a Python long (bignum) numeral.
8024 >>> s = FiniteDomainSort('S', 100)
8025 >>> v = FiniteDomainVal(3, s)
8031 return int(self.as_string())
8033 def as_string(self):
8034 """Return a Z3 finite-domain numeral as a Python string.
8036 >>> s = FiniteDomainSort('S', 100)
8037 >>> v = FiniteDomainVal(42, s)
8041 return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
8044def FiniteDomainVal(val, sort, ctx=None):
8045 """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.
8047 >>> s = FiniteDomainSort('S', 256)
8048 >>> FiniteDomainVal(255, s)
8050 >>> FiniteDomainVal('100', s)
8054 _z3_assert(is_finite_domain_sort(sort), "Expected finite-domain sort")
8056 return FiniteDomainNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), sort.ast), ctx)
8059def is_finite_domain_value(a):
8060 """Return `True` if `a` is a Z3 finite-domain value.
8062 >>> s = FiniteDomainSort('S', 100)
8063 >>> b = Const('b', s)
8064 >>> is_finite_domain_value(b)
8066 >>> b = FiniteDomainVal(10, s)
8069 >>> is_finite_domain_value(b)
8072 return is_finite_domain(a) and _is_numeral(a.ctx, a.as_ast())
8075#########################################
8079#########################################
8081class OptimizeObjective:
8082 def __init__(self, opt, value, is_max):
8085 self._is_max = is_max
8089 return _to_expr_ref(Z3_optimize_get_lower(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8093 return _to_expr_ref(Z3_optimize_get_upper(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8095 def lower_values(self):
8097 return AstVector(Z3_optimize_get_lower_as_vector(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8099 def upper_values(self):
8101 return AstVector(Z3_optimize_get_upper_as_vector(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8110 return "%s:%s" % (self._value, self._is_max)
8116def _global_on_model(ctx):
8117 (fn, mdl) = _on_models[ctx]
8121_on_model_eh = on_model_eh_type(_global_on_model)
8124class Optimize(Z3PPObject):
8125 """Optimize API provides methods for solving using objective functions and weighted soft constraints"""
8127 def __init__(self, optimize=None, ctx=None):
8128 self.ctx = _get_ctx(ctx)
8129 if optimize is None:
8130 self.optimize = Z3_mk_optimize(self.ctx.ref())
8132 self.optimize = optimize
8133 self._on_models_id = None
8134 Z3_optimize_inc_ref(self.ctx.ref(), self.optimize)
8136 def __deepcopy__(self, memo={}):
8137 return Optimize(self.optimize, self.ctx)
8140 if self.optimize is not None and self.ctx.ref() is not None and Z3_optimize_dec_ref is not None:
8141 Z3_optimize_dec_ref(self.ctx.ref(), self.optimize)
8142 if self._on_models_id is not None:
8143 del _on_models[self._on_models_id]
8145 def __enter__(self):
8149 def __exit__(self, *exc_info):
8152 def set(self, *args, **keys):
8153 """Set a configuration option.
8154 The method `help()` return a string containing all available options.
8156 p = args2params(args, keys, self.ctx)
8157 Z3_optimize_set_params(self.ctx.ref(), self.optimize, p.params)
8160 """Display a string describing all available options."""
8161 print(Z3_optimize_get_help(self.ctx.ref(), self.optimize))
8163 def param_descrs(self):
8164 """Return the parameter description set."""
8165 return ParamDescrsRef(Z3_optimize_get_param_descrs(self.ctx.ref(), self.optimize), self.ctx)
8167 def assert_exprs(self, *args):
8168 """Assert constraints as background axioms for the optimize solver."""
8169 args = _get_args(args)
8170 s = BoolSort(self.ctx)
8172 if isinstance(arg, Goal) or isinstance(arg, AstVector):
8174 Z3_optimize_assert(self.ctx.ref(), self.optimize, f.as_ast())
8177 Z3_optimize_assert(self.ctx.ref(), self.optimize, arg.as_ast())
8179 def add(self, *args):
8180 """Assert constraints as background axioms for the optimize solver. Alias for assert_expr."""
8181 self.assert_exprs(*args)
8183 def __iadd__(self, fml):
8187 def assert_and_track(self, a, p):
8188 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
8190 If `p` is a string, it will be automatically converted into a Boolean constant.
8195 >>> s.assert_and_track(x > 0, 'p1')
8196 >>> s.assert_and_track(x != 1, 'p2')
8197 >>> s.assert_and_track(x < 0, p3)
8198 >>> print(s.check())
8200 >>> c = s.unsat_core()
8210 if isinstance(p, str):
8211 p = Bool(p, self.ctx)
8212 _z3_assert(isinstance(a, BoolRef), "Boolean expression expected")
8213 _z3_assert(isinstance(p, BoolRef) and is_const(p), "Boolean expression expected")
8214 Z3_optimize_assert_and_track(self.ctx.ref(), self.optimize, a.as_ast(), p.as_ast())
8216 def add_soft(self, arg, weight="1", id=None):
8217 """Add soft constraint with optional weight and optional identifier.
8218 If no weight is supplied, then the penalty for violating the soft constraint
8220 Soft constraints are grouped by identifiers. Soft constraints that are
8221 added without identifiers are grouped by default.
8224 weight = "%d" % weight
8225 elif isinstance(weight, float):
8226 weight = "%f" % weight
8227 if not isinstance(weight, str):
8228 raise Z3Exception("weight should be a string or an integer")
8231 id = to_symbol(id, self.ctx)
8234 v = Z3_optimize_assert_soft(self.ctx.ref(), self.optimize, a.as_ast(), weight, id)
8235 return OptimizeObjective(self, v, False)
8236 if sys.version_info.major >= 3 and isinstance(arg, Iterable):
8237 return [asoft(a) for a in arg]
8240 def set_initial_value(self, var, value):
8241 """initialize the solver's state by setting the initial value of var to value
8244 value = s.cast(value)
8245 Z3_optimize_set_initial_value(self.ctx.ref(), self.optimize, var.ast, value.ast)
8247 def maximize(self, arg):
8248 """Add objective function to maximize."""
8249 return OptimizeObjective(
8251 Z3_optimize_maximize(self.ctx.ref(), self.optimize, arg.as_ast()),
8255 def minimize(self, arg):
8256 """Add objective function to minimize."""
8257 return OptimizeObjective(
8259 Z3_optimize_minimize(self.ctx.ref(), self.optimize, arg.as_ast()),
8264 """create a backtracking point for added rules, facts and assertions"""
8265 Z3_optimize_push(self.ctx.ref(), self.optimize)
8268 """restore to previously created backtracking point"""
8269 Z3_optimize_pop(self.ctx.ref(), self.optimize)
8271 def check(self, *assumptions):
8272 """Check consistency and produce optimal values."""
8273 assumptions = _get_args(assumptions)
8274 num = len(assumptions)
8275 _assumptions = (Ast * num)()
8276 for i in range(num):
8277 _assumptions[i] = assumptions[i].as_ast()
8278 return CheckSatResult(Z3_optimize_check(self.ctx.ref(), self.optimize, num, _assumptions))
8280 def reason_unknown(self):
8281 """Return a string that describes why the last `check()` returned `unknown`."""
8282 return Z3_optimize_get_reason_unknown(self.ctx.ref(), self.optimize)
8285 """Return a model for the last check()."""
8287 return ModelRef(Z3_optimize_get_model(self.ctx.ref(), self.optimize), self.ctx)
8289 raise Z3Exception("model is not available")
8291 def unsat_core(self):
8292 return AstVector(Z3_optimize_get_unsat_core(self.ctx.ref(), self.optimize), self.ctx)
8294 def lower(self, obj):
8295 if not isinstance(obj, OptimizeObjective):
8296 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8299 def upper(self, obj):
8300 if not isinstance(obj, OptimizeObjective):
8301 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8304 def lower_values(self, obj):
8305 if not isinstance(obj, OptimizeObjective):
8306 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8307 return obj.lower_values()
8309 def upper_values(self, obj):
8310 if not isinstance(obj, OptimizeObjective):
8311 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8312 return obj.upper_values()
8314 def from_file(self, filename):
8315 """Parse assertions and objectives from a file"""
8316 Z3_optimize_from_file(self.ctx.ref(), self.optimize, filename)
8318 def from_string(self, s):
8319 """Parse assertions and objectives from a string"""
8320 Z3_optimize_from_string(self.ctx.ref(), self.optimize, s)
8322 def assertions(self):
8323 """Return an AST vector containing all added constraints."""
8324 return AstVector(Z3_optimize_get_assertions(self.ctx.ref(), self.optimize), self.ctx)
8326 def objectives(self):
8327 """returns set of objective functions"""
8328 return AstVector(Z3_optimize_get_objectives(self.ctx.ref(), self.optimize), self.ctx)
8331 """Return a formatted string with all added rules and constraints."""
8335 """Return a formatted string (in Lisp-like format) with all added constraints.
8336 We say the string is in s-expression format.
8338 return Z3_optimize_to_string(self.ctx.ref(), self.optimize)
8340 def statistics(self):
8341 """Return statistics for the last check`.
8343 return Statistics(Z3_optimize_get_statistics(self.ctx.ref(), self.optimize), self.ctx)
8345 def set_on_model(self, on_model):
8346 """Register a callback that is invoked with every incremental improvement to
8347 objective values. The callback takes a model as argument.
8348 The life-time of the model is limited to the callback so the
8349 model has to be (deep) copied if it is to be used after the callback
8351 id = len(_on_models) + 41
8352 mdl = Model(self.ctx)
8353 _on_models[id] = (on_model, mdl)
8354 self._on_models_id = id
8355 Z3_optimize_register_model_eh(
8356 self.ctx.ref(), self.optimize, mdl.model, ctypes.c_void_p(id), _on_model_eh,
8360#########################################
8364#########################################
8365class ApplyResult(Z3PPObject):
8366 """An ApplyResult object contains the subgoals produced by a tactic when applied to a goal.
8367 It also contains model and proof converters.
8370 def __init__(self, result, ctx):
8371 self.result = result
8373 Z3_apply_result_inc_ref(self.ctx.ref(), self.result)
8375 def __deepcopy__(self, memo={}):
8376 return ApplyResult(self.result, self.ctx)
8379 if self.ctx.ref() is not None and Z3_apply_result_dec_ref is not None:
8380 Z3_apply_result_dec_ref(self.ctx.ref(), self.result)
8383 """Return the number of subgoals in `self`.
8385 >>> a, b = Ints('a b')
8387 >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
8388 >>> t = Tactic('split-clause')
8392 >>> t = Then(Tactic('split-clause'), Tactic('split-clause'))
8395 >>> t = Then(Tactic('split-clause'), Tactic('split-clause'), Tactic('propagate-values'))
8399 return int(Z3_apply_result_get_num_subgoals(self.ctx.ref(), self.result))
8401 def __getitem__(self, idx):
8402 """Return one of the subgoals stored in ApplyResult object `self`.
8404 >>> a, b = Ints('a b')
8406 >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
8407 >>> t = Tactic('split-clause')
8410 [a == 0, Or(b == 0, b == 1), a > b]
8412 [a == 1, Or(b == 0, b == 1), a > b]
8414 if idx >= len(self):
8416 return Goal(goal=Z3_apply_result_get_subgoal(self.ctx.ref(), self.result, idx), ctx=self.ctx)
8419 return obj_to_string(self)
8422 """Return a textual representation of the s-expression representing the set of subgoals in `self`."""
8423 return Z3_apply_result_to_string(self.ctx.ref(), self.result)
8426 """Return a Z3 expression consisting of all subgoals.
8431 >>> g.add(Or(x == 2, x == 3))
8432 >>> r = Tactic('simplify')(g)
8434 [[Not(x <= 1), Or(x == 2, x == 3)]]
8436 And(Not(x <= 1), Or(x == 2, x == 3))
8437 >>> r = Tactic('split-clause')(g)
8439 [[x > 1, x == 2], [x > 1, x == 3]]
8441 Or(And(x > 1, x == 2), And(x > 1, x == 3))
8445 return BoolVal(False, self.ctx)
8447 return self[0].as_expr()
8449 return Or([self[i].as_expr() for i in range(len(self))])
8451#########################################
8455#########################################
8458 """Simplifiers act as pre-processing utilities for solvers.
8459 Build a custom simplifier and add it to a solve
r"""
8461 def __init__(self, simplifier, ctx=None):
8462 self.ctx = _get_ctx(ctx)
8463 self.simplifier = None
8464 if isinstance(simplifier, SimplifierObj):
8465 self.simplifier = simplifier
8466 elif isinstance(simplifier, list):
8467 simps = [Simplifier(s, ctx) for s in simplifier]
8468 self.simplifier = simps[0].simplifier
8469 for i in range(1, len(simps)):
8470 self.simplifier = Z3_simplifier_and_then(self.ctx.ref(), self.simplifier, simps[i].simplifier)
8471 Z3_simplifier_inc_ref(self.ctx.ref(), self.simplifier)
8475 _z3_assert(isinstance(simplifier, str), "simplifier name expected")
8477 self.simplifier = Z3_mk_simplifier(self.ctx.ref(), str(simplifier))
8479 raise Z3Exception("unknown simplifier '%s'" % simplifier)
8480 Z3_simplifier_inc_ref(self.ctx.ref(), self.simplifier)
8482 def __deepcopy__(self, memo={}):
8483 return Simplifier(self.simplifier, self.ctx)
8486 if self.simplifier is not None and self.ctx.ref() is not None and Z3_simplifier_dec_ref is not None:
8487 Z3_simplifier_dec_ref(self.ctx.ref(), self.simplifier)
8489 def using_params(self, *args, **keys):
8490 """Return a simplifier that uses the given configuration options"""
8491 p = args2params(args, keys, self.ctx)
8492 return Simplifier(Z3_simplifier_using_params(self.ctx.ref(), self.simplifier, p.params), self.ctx)
8494 def add(self, solver):
8495 """Return a solver that applies the simplification pre-processing specified by the simplifie
r"""
8496 return Solver(Z3_solver_add_simplifier(self.ctx.ref(), solver.solver, self.simplifier), self.ctx)
8499 """Display a string containing a description of the available options for the `self` simplifier."""
8500 print(Z3_simplifier_get_help(self.ctx.ref(), self.simplifier))
8502 def param_descrs(self):
8503 """Return the parameter description set."""
8504 return ParamDescrsRef(Z3_simplifier_get_param_descrs(self.ctx.ref(), self.simplifier), self.ctx)
8507#########################################
8511#########################################
8515 """Tactics transform, solver and/or simplify sets of constraints (Goal).
8516 A Tactic can be converted into a Solver using the method solver().
8518 Several combinators are available for creating new tactics using the built-in ones:
8519 Then(), OrElse(), FailIf(), Repeat(), When(), Cond().
8522 def __init__(self, tactic, ctx=None):
8523 self.ctx = _get_ctx(ctx)
8525 if isinstance(tactic, TacticObj):
8526 self.tactic = tactic
8529 _z3_assert(isinstance(tactic, str), "tactic name expected")
8531 self.tactic = Z3_mk_tactic(self.ctx.ref(), str(tactic))
8533 raise Z3Exception("unknown tactic '%s'" % tactic)
8534 Z3_tactic_inc_ref(self.ctx.ref(), self.tactic)
8536 def __deepcopy__(self, memo={}):
8537 return Tactic(self.tactic, self.ctx)
8540 if self.tactic is not None and self.ctx.ref() is not None and Z3_tactic_dec_ref is not None:
8541 Z3_tactic_dec_ref(self.ctx.ref(), self.tactic)
8543 def solver(self, logFile=None):
8544 """Create a solver using the tactic `self`.
8546 The solver supports the methods `push()` and `pop()`, but it
8547 will always solve each `check()` from scratch.
8549 >>> t = Then('simplify', 'nlsat')
8552 >>> s.add(x**2 == 2, x > 0)
8558 return Solver(Z3_mk_solver_from_tactic(self.ctx.ref(), self.tactic), self.ctx, logFile)
8560 def apply(self, goal, *arguments, **keywords):
8561 """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options.
8563 >>> x, y = Ints('x y')
8564 >>> t = Tactic('solve-eqs')
8565 >>> t.apply(And(x == 0, y >= x + 1))
8569 _z3_assert(isinstance(goal, (Goal, BoolRef)), "Z3 Goal or Boolean expressions expected")
8570 goal = _to_goal(goal)
8571 if len(arguments) > 0 or len(keywords) > 0:
8572 p = args2params(arguments, keywords, self.ctx)
8573 return ApplyResult(Z3_tactic_apply_ex(self.ctx.ref(), self.tactic, goal.goal, p.params), self.ctx)
8575 return ApplyResult(Z3_tactic_apply(self.ctx.ref(), self.tactic, goal.goal), self.ctx)
8577 def __call__(self, goal, *arguments, **keywords):
8578 """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options.
8580 >>> x, y = Ints('x y')
8581 >>> t = Tactic('solve-eqs')
8582 >>> t(And(x == 0, y >= x + 1))
8585 return self.apply(goal, *arguments, **keywords)
8588 """Display a string containing a description of the available options for the `self` tactic."""
8589 print(Z3_tactic_get_help(self.ctx.ref(), self.tactic))
8591 def param_descrs(self):
8592 """Return the parameter description set."""
8593 return ParamDescrsRef(Z3_tactic_get_param_descrs(self.ctx.ref(), self.tactic), self.ctx)
8597 if isinstance(a, BoolRef):
8598 goal = Goal(ctx=a.ctx)
8605def _to_tactic(t, ctx=None):
8606 if isinstance(t, Tactic):
8609 return Tactic(t, ctx)
8612def _and_then(t1, t2, ctx=None):
8613 t1 = _to_tactic(t1, ctx)
8614 t2 = _to_tactic(t2, ctx)
8616 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8617 return Tactic(Z3_tactic_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8620def _or_else(t1, t2, ctx=None):
8621 t1 = _to_tactic(t1, ctx)
8622 t2 = _to_tactic(t2, ctx)
8624 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8625 return Tactic(Z3_tactic_or_else(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8628def AndThen(*ts, **ks):
8629 """Return a tactic that applies the tactics in `*ts` in sequence.
8631 >>> x, y = Ints('x y')
8632 >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
8633 >>> t(And(x == 0, y > x + 1))
8635 >>> t(And(x == 0, y > x + 1)).as_expr()
8639 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8640 ctx = ks.get("ctx", None)
8643 for i in range(num - 1):
8644 r = _and_then(r, ts[i + 1], ctx)
8649 """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).
8651 >>> x, y = Ints('x y')
8652 >>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
8653 >>> t(And(x == 0, y > x + 1))
8655 >>> t(And(x == 0, y > x + 1)).as_expr()
8658 return AndThen(*ts, **ks)
8661def OrElse(*ts, **ks):
8662 """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).
8665 >>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
8666 >>> # Tactic split-clause fails if there is no clause in the given goal.
8669 >>> t(Or(x == 0, x == 1))
8670 [[x == 0], [x == 1]]
8673 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8674 ctx = ks.get("ctx", None)
8677 for i in range(num - 1):
8678 r = _or_else(r, ts[i + 1], ctx)
8682def ParOr(*ts, **ks):
8683 """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).
8686 >>> t = ParOr(Tactic('simplify'), Tactic('fail'))
8691 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8692 ctx = _get_ctx(ks.get("ctx", None))
8693 ts = [_to_tactic(t, ctx) for t in ts]
8695 _args = (TacticObj * sz)()
8697 _args[i] = ts[i].tactic
8698 return Tactic(Z3_tactic_par_or(ctx.ref(), sz, _args), ctx)
8701def ParThen(t1, t2, ctx=None):
8702 """Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
8703 The subgoals are processed in parallel.
8705 >>> x, y = Ints('x y')
8706 >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
8707 >>> t(And(Or(x == 1, x == 2), y == x + 1))
8708 [[x == 1, y == 2], [x == 2, y == 3]]
8710 t1 = _to_tactic(t1, ctx)
8711 t2 = _to_tactic(t2, ctx)
8713 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8714 return Tactic(Z3_tactic_par_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8717def ParAndThen(t1, t2, ctx=None):
8718 """Alias for ParThen(t1, t2, ctx)."""
8719 return ParThen(t1, t2, ctx)
8722def With(t, *args, **keys):
8723 """Return a tactic that applies tactic `t` using the given configuration options.
8725 >>> x, y = Ints('x y')
8726 >>> t = With(Tactic('simplify'), som=True)
8727 >>> t((x + 1)*(y + 2) == 0)
8728 [[2*x + y + x*y == -2]]
8730 ctx = keys.pop("ctx", None)
8731 t = _to_tactic(t, ctx)
8732 p = args2params(args, keys, t.ctx)
8733 return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8736def WithParams(t, p):
8737 """Return a tactic that applies tactic `t` using the given configuration options.
8739 >>> x, y = Ints('x y')
8741 >>> p.set("som", True)
8742 >>> t = WithParams(Tactic('simplify'), p)
8743 >>> t((x + 1)*(y + 2) == 0)
8744 [[2*x + y + x*y == -2]]
8746 t = _to_tactic(t, None)
8747 return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8750def Repeat(t, max=4294967295, ctx=None):
8751 """Return a tactic that keeps applying `t` until the goal is not modified anymore
8752 or the maximum number of iterations `max` is reached.
8754 >>> x, y = Ints('x y')
8755 >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
8756 >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
8758 >>> for subgoal in r: print(subgoal)
8759 [x == 0, y == 0, x > y]
8760 [x == 0, y == 1, x > y]
8761 [x == 1, y == 0, x > y]
8762 [x == 1, y == 1, x > y]
8763 >>> t = Then(t, Tactic('propagate-values'))
8767 t = _to_tactic(t, ctx)
8768 return Tactic(Z3_tactic_repeat(t.ctx.ref(), t.tactic, max), t.ctx)
8771def TryFor(t, ms, ctx=None):
8772 """Return a tactic that applies `t` to a given goal for `ms` milliseconds.
8774 If `t` does not terminate in `ms` milliseconds, then it fails.
8776 t = _to_tactic(t, ctx)
8777 return Tactic(Z3_tactic_try_for(t.ctx.ref(), t.tactic, ms), t.ctx)
8780def tactics(ctx=None):
8781 """Return a list of all available tactics in Z3.
8784 >>> l.count('simplify') == 1
8788 return [Z3_get_tactic_name(ctx.ref(), i) for i in range(Z3_get_num_tactics(ctx.ref()))]
8791def tactic_description(name, ctx=None):
8792 """Return a short description for the tactic named `name`.
8794 >>> d = tactic_description('simplify')
8797 return Z3_tactic_get_descr(ctx.ref(), name)
8800def describe_tactics():
8801 """Display a (tabular) description of all available tactics in Z3."""
8804 print('<table border="1" cellpadding="2" cellspacing="0">')
8807 print('<tr style="background-color:#CFCFCF">')
8812 print("<td>%s</td><td>%s</td></tr>" % (t, insert_line_breaks(tactic_description(t), 40)))
8816 print("%s : %s" % (t, tactic_description(t)))
8820 """Probes are used to inspect a goal (aka problem) and collect information that may be used
8821 to decide which solver and/or preprocessing step will be used.
8824 def __init__(self, probe, ctx=None):
8825 self.ctx = _get_ctx(ctx)
8827 if isinstance(probe, ProbeObj):
8829 elif isinstance(probe, float):
8830 self.probe = Z3_probe_const(self.ctx.ref(), probe)
8831 elif _is_int(probe):
8832 self.probe = Z3_probe_const(self.ctx.ref(), float(probe))
8833 elif isinstance(probe, bool):
8835 self.probe = Z3_probe_const(self.ctx.ref(), 1.0)
8837 self.probe = Z3_probe_const(self.ctx.ref(), 0.0)
8840 _z3_assert(isinstance(probe, str), "probe name expected")
8842 self.probe = Z3_mk_probe(self.ctx.ref(), probe)
8844 raise Z3Exception("unknown probe '%s'" % probe)
8845 Z3_probe_inc_ref(self.ctx.ref(), self.probe)
8847 def __deepcopy__(self, memo={}):
8848 return Probe(self.probe, self.ctx)
8851 if self.probe is not None and self.ctx.ref() is not None and Z3_probe_dec_ref is not None:
8852 Z3_probe_dec_ref(self.ctx.ref(), self.probe)
8854 def __lt__(self, other):
8855 """Return a probe that evaluates to "true" when the value returned by `self`
8856 is less than the value returned by `other`.
8858 >>> p = Probe('size') < 10
8866 return Probe(Z3_probe_lt(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8868 def __gt__(self, other):
8869 """Return a probe that evaluates to "true" when the value returned by `self`
8870 is greater than the value returned by `other`.
8872 >>> p = Probe('size') > 10
8880 return Probe(Z3_probe_gt(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8882 def __le__(self, other):
8883 """Return a probe that evaluates to "true" when the value returned by `self`
8884 is less than or equal to the value returned by `other`.
8886 >>> p = Probe('size') <= 2
8894 return Probe(Z3_probe_le(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8896 def __ge__(self, other):
8897 """Return a probe that evaluates to "true" when the value returned by `self`
8898 is greater than or equal to the value returned by `other`.
8900 >>> p = Probe('size') >= 2
8908 return Probe(Z3_probe_ge(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8910 def __eq__(self, other):
8911 """Return a probe that evaluates to "true" when the value returned by `self`
8912 is equal to the value returned by `other`.
8914 >>> p = Probe('size') == 2
8922 return Probe(Z3_probe_eq(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8924 def __ne__(self, other):
8925 """Return a probe that evaluates to "true" when the value returned by `self`
8926 is not equal to the value returned by `other`.
8928 >>> p = Probe('size') != 2
8936 p = self.__eq__(other)
8937 return Probe(Z3_probe_not(self.ctx.ref(), p.probe), self.ctx)
8939 def __call__(self, goal):
8940 """Evaluate the probe `self` in the given goal.
8942 >>> p = Probe('size')
8952 >>> p = Probe('num-consts')
8955 >>> p = Probe('is-propositional')
8958 >>> p = Probe('is-qflia')
8963 _z3_assert(isinstance(goal, (Goal, BoolRef)), "Z3 Goal or Boolean expression expected")
8964 goal = _to_goal(goal)
8965 return Z3_probe_apply(self.ctx.ref(), self.probe, goal.goal)
8969 """Return `True` if `p` is a Z3 probe.
8971 >>> is_probe(Int('x'))
8973 >>> is_probe(Probe('memory'))
8976 return isinstance(p, Probe)
8979def _to_probe(p, ctx=None):
8983 return Probe(p, ctx)
8986def probes(ctx=None):
8987 """Return a list of all available probes in Z3.
8990 >>> l.count('memory') == 1
8994 return [Z3_get_probe_name(ctx.ref(), i) for i in range(Z3_get_num_probes(ctx.ref()))]
8997def probe_description(name, ctx=None):
8998 """Return a short description for the probe named `name`.
9000 >>> d = probe_description('memory')
9003 return Z3_probe_get_descr(ctx.ref(), name)
9006def describe_probes():
9007 """Display a (tabular) description of all available probes in Z3."""
9010 print('<table border="1" cellpadding="2" cellspacing="0">')
9013 print('<tr style="background-color:#CFCFCF">')
9018 print("<td>%s</td><td>%s</td></tr>" % (p, insert_line_breaks(probe_description(p), 40)))
9022 print("%s : %s" % (p, probe_description(p)))
9025def _probe_nary(f, args, ctx):
9027 _z3_assert(len(args) > 0, "At least one argument expected")
9029 r = _to_probe(args[0], ctx)
9030 for i in range(num - 1):
9031 r = Probe(f(ctx.ref(), r.probe, _to_probe(args[i + 1], ctx).probe), ctx)
9035def _probe_and(args, ctx):
9036 return _probe_nary(Z3_probe_and, args, ctx)
9039def _probe_or(args, ctx):
9040 return _probe_nary(Z3_probe_or, args, ctx)
9043def FailIf(p, ctx=None):
9044 """Return a tactic that fails if the probe `p` evaluates to true.
9045 Otherwise, it returns the input goal unmodified.
9047 In the following example, the tactic applies 'simplify' if and only if there are
9048 more than 2 constraints in the goal.
9050 >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
9051 >>> x, y = Ints('x y')
9057 >>> g.add(x == y + 1)
9059 [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
9061 p = _to_probe(p, ctx)
9062 return Tactic(Z3_tactic_fail_if(p.ctx.ref(), p.probe), p.ctx)
9065def When(p, t, ctx=None):
9066 """Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
9067 Otherwise, it returns the input goal unmodified.
9069 >>> t = When(Probe('size') > 2, Tactic('simplify'))
9070 >>> x, y = Ints('x y')
9076 >>> g.add(x == y + 1)
9078 [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
9080 p = _to_probe(p, ctx)
9081 t = _to_tactic(t, ctx)
9082 return Tactic(Z3_tactic_when(t.ctx.ref(), p.probe, t.tactic), t.ctx)
9085def Cond(p, t1, t2, ctx=None):
9086 """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.
9088 >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
9090 p = _to_probe(p, ctx)
9091 t1 = _to_tactic(t1, ctx)
9092 t2 = _to_tactic(t2, ctx)
9093 return Tactic(Z3_tactic_cond(t1.ctx.ref(), p.probe, t1.tactic, t2.tactic), t1.ctx)
9095#########################################
9099#########################################
9102def simplify(a, *arguments, **keywords):
9103 """Simplify the expression `a` using the given options.
9105 This function has many options. Use `help_simplify` to obtain the complete list.
9109 >>> simplify(x + 1 + y + x + 1)
9111 >>> simplify((x + 1)*(y + 1), som=True)
9113 >>> simplify(Distinct(x, y, 1), blast_distinct=True)
9114 And(Not(x == y), Not(x == 1), Not(y == 1))
9115 >>> simplify(And(x == 0, y == 1), elim_and=True)
9116 Not(Or(Not(x == 0), Not(y == 1)))
9119 _z3_assert(is_expr(a), "Z3 expression expected")
9120 if len(arguments) > 0 or len(keywords) > 0:
9121 p = args2params(arguments, keywords, a.ctx)
9122 return _to_expr_ref(Z3_simplify_ex(a.ctx_ref(), a.as_ast(), p.params), a.ctx)
9124 return _to_expr_ref(Z3_simplify(a.ctx_ref(), a.as_ast()), a.ctx)
9128 """Return a string describing all options available for Z3 `simplify` procedure."""
9129 print(Z3_simplify_get_help(main_ctx().ref()))
9132def simplify_param_descrs():
9133 """Return the set of parameter descriptions for Z3 `simplify` procedure."""
9134 return ParamDescrsRef(Z3_simplify_get_param_descrs(main_ctx().ref()), main_ctx())
9137def substitute(t, *m):
9138 """Apply substitution m on t, m is a list of pairs of the form (from, to).
9139 Every occurrence in t of from is replaced with to.
9143 >>> substitute(x + 1, (x, y + 1))
9145 >>> f = Function('f', IntSort(), IntSort())
9146 >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
9149 if isinstance(m, tuple):
9151 if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
9154 _z3_assert(is_expr(t), "Z3 expression expected")
9156 all([isinstance(p, tuple) and is_expr(p[0]) and is_expr(p[1]) for p in m]),
9157 "Z3 invalid substitution, expression pairs expected.")
9159 all([p[0].sort().eq(p[1].sort()) for p in m]),
9160 'Z3 invalid substitution, mismatching "from" and "to" sorts.')
9162 _from = (Ast * num)()
9164 for i in range(num):
9165 _from[i] = m[i][0].as_ast()
9166 _to[i] = m[i][1].as_ast()
9167 return _to_expr_ref(Z3_substitute(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
9170def substitute_vars(t, *m):
9171 """Substitute the free variables in t with the expression in m.
9173 >>> v0 = Var(0, IntSort())
9174 >>> v1 = Var(1, IntSort())
9176 >>> f = Function('f', IntSort(), IntSort(), IntSort())
9177 >>> # replace v0 with x+1 and v1 with x
9178 >>> substitute_vars(f(v0, v1), x + 1, x)
9182 _z3_assert(is_expr(t), "Z3 expression expected")
9183 _z3_assert(all([is_expr(n) for n in m]), "Z3 invalid substitution, list of expressions expected.")
9186 for i in range(num):
9187 _to[i] = m[i].as_ast()
9188 return _to_expr_ref(Z3_substitute_vars(t.ctx.ref(), t.as_ast(), num, _to), t.ctx)
9190def substitute_funs(t, *m):
9191 """Apply substitution m on t, m is a list of pairs of a function and expression (from, to)
9192 Every occurrence in to of the function from is replaced with the expression to.
9193 The expression to can have free variables, that refer to the arguments of from.
9196 if isinstance(m, tuple):
9198 if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
9201 _z3_assert(is_expr(t), "Z3 expression expected")
9202 _z3_assert(all([isinstance(p, tuple) and is_func_decl(p[0]) and is_expr(p[1]) for p in m]), "Z3 invalid substitution, function pairs expected.")
9204 _from = (FuncDecl * num)()
9206 for i in range(num):
9207 _from[i] = m[i][0].as_func_decl()
9208 _to[i] = m[i][1].as_ast()
9209 return _to_expr_ref(Z3_substitute_funs(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
9213 """Create the sum of the Z3 expressions.
9215 >>> a, b, c = Ints('a b c')
9220 >>> A = IntVector('a', 5)
9222 a__0 + a__1 + a__2 + a__3 + a__4
9224 args = _get_args(args)
9227 ctx = _ctx_from_ast_arg_list(args)
9229 return _reduce(lambda a, b: a + b, args, 0)
9230 args = _coerce_expr_list(args, ctx)
9232 return _reduce(lambda a, b: a + b, args, 0)
9234 _args, sz = _to_ast_array(args)
9235 return ArithRef(Z3_mk_add(ctx.ref(), sz, _args), ctx)
9239 """Create the product of the Z3 expressions.
9241 >>> a, b, c = Ints('a b c')
9242 >>> Product(a, b, c)
9244 >>> Product([a, b, c])
9246 >>> A = IntVector('a', 5)
9248 a__0*a__1*a__2*a__3*a__4
9250 args = _get_args(args)
9253 ctx = _ctx_from_ast_arg_list(args)
9255 return _reduce(lambda a, b: a * b, args, 1)
9256 args = _coerce_expr_list(args, ctx)
9258 return _reduce(lambda a, b: a * b, args, 1)
9260 _args, sz = _to_ast_array(args)
9261 return ArithRef(Z3_mk_mul(ctx.ref(), sz, _args), ctx)
9264 """Create the absolute value of an arithmetic expression"""
9265 return If(arg > 0, arg, -arg)
9269 """Create an at-most Pseudo-Boolean k constraint.
9271 >>> a, b, c = Bools('a b c')
9272 >>> f = AtMost(a, b, c, 2)
9274 args = _get_args(args)
9276 _z3_assert(len(args) > 1, "Non empty list of arguments expected")
9277 ctx = _ctx_from_ast_arg_list(args)
9279 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9280 args1 = _coerce_expr_list(args[:-1], ctx)
9282 _args, sz = _to_ast_array(args1)
9283 return BoolRef(Z3_mk_atmost(ctx.ref(), sz, _args, k), ctx)
9287 """Create an at-least Pseudo-Boolean k constraint.
9289 >>> a, b, c = Bools('a b c')
9290 >>> f = AtLeast(a, b, c, 2)
9292 args = _get_args(args)
9294 _z3_assert(len(args) > 1, "Non empty list of arguments expected")
9295 ctx = _ctx_from_ast_arg_list(args)
9297 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9298 args1 = _coerce_expr_list(args[:-1], ctx)
9300 _args, sz = _to_ast_array(args1)
9301 return BoolRef(Z3_mk_atleast(ctx.ref(), sz, _args, k), ctx)
9304def _reorder_pb_arg(arg):
9306 if not _is_int(b) and _is_int(a):
9311def _pb_args_coeffs(args, default_ctx=None):
9312 args = _get_args_ast_list(args)
9314 return _get_ctx(default_ctx), 0, (Ast * 0)(), (ctypes.c_int * 0)()
9315 args = [_reorder_pb_arg(arg) for arg in args]
9316 args, coeffs = zip(*args)
9318 _z3_assert(len(args) > 0, "Non empty list of arguments expected")
9319 ctx = _ctx_from_ast_arg_list(args)
9321 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9322 args = _coerce_expr_list(args, ctx)
9323 _args, sz = _to_ast_array(args)
9324 _coeffs = (ctypes.c_int * len(coeffs))()
9325 for i in range(len(coeffs)):
9326 _z3_check_cint_overflow(coeffs[i], "coefficient")
9327 _coeffs[i] = coeffs[i]
9328 return ctx, sz, _args, _coeffs, args
9332 """Create a Pseudo-Boolean inequality k constraint.
9334 >>> a, b, c = Bools('a b c')
9335 >>> f = PbLe(((a,1),(b,3),(c,2)), 3)
9337 _z3_check_cint_overflow(k, "k")
9338 ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9339 return BoolRef(Z3_mk_pble(ctx.ref(), sz, _args, _coeffs, k), ctx)
9343 """Create a Pseudo-Boolean inequality k constraint.
9345 >>> a, b, c = Bools('a b c')
9346 >>> f = PbGe(((a,1),(b,3),(c,2)), 3)
9348 _z3_check_cint_overflow(k, "k")
9349 ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9350 return BoolRef(Z3_mk_pbge(ctx.ref(), sz, _args, _coeffs, k), ctx)
9353def PbEq(args, k, ctx=None):
9354 """Create a Pseudo-Boolean equality k constraint.
9356 >>> a, b, c = Bools('a b c')
9357 >>> f = PbEq(((a,1),(b,3),(c,2)), 3)
9359 _z3_check_cint_overflow(k, "k")
9360 ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9361 return BoolRef(Z3_mk_pbeq(ctx.ref(), sz, _args, _coeffs, k), ctx)
9364def solve(*args, **keywords):
9365 """Solve the constraints `*args`.
9367 This is a simple function for creating demonstrations. It creates a solver,
9368 configure it using the options in `keywords`, adds the constraints
9369 in `args`, and invokes check.
9372 >>> solve(a > 0, a < 2)
9375 show = keywords.pop("show", False)
9383 print("no solution")
9385 print("failed to solve")
9394def solve_using(s, *args, **keywords):
9395 """Solve the constraints `*args` using solver `s`.
9397 This is a simple function for creating demonstrations. It is similar to `solve`,
9398 but it uses the given solver `s`.
9399 It configures solver `s` using the options in `keywords`, adds the constraints
9400 in `args`, and invokes check.
9402 show = keywords.pop("show", False)
9404 _z3_assert(isinstance(s, Solver), "Solver object expected")
9412 print("no solution")
9414 print("failed to solve")
9425def prove(claim, show=False, **keywords):
9426 """Try to prove the given claim.
9428 This is a simple function for creating demonstrations. It tries to prove
9429 `claim` by showing the negation is unsatisfiable.
9431 >>> p, q = Bools('p q')
9432 >>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
9436 _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
9446 print("failed to prove")
9449 print("counterexample")
9453def _solve_html(*args, **keywords):
9454 """Version of function `solve` that renders HTML output."""
9455 show = keywords.pop("show", False)
9460 print("<b>Problem:</b>")
9464 print("<b>no solution</b>")
9466 print("<b>failed to solve</b>")
9473 print("<b>Solution:</b>")
9477def _solve_using_html(s, *args, **keywords):
9478 """Version of function `solve_using` that renders HTML."""
9479 show = keywords.pop("show", False)
9481 _z3_assert(isinstance(s, Solver), "Solver object expected")
9485 print("<b>Problem:</b>")
9489 print("<b>no solution</b>")
9491 print("<b>failed to solve</b>")
9498 print("<b>Solution:</b>")
9502def _prove_html(claim, show=False, **keywords):
9503 """Version of function `prove` that renders HTML."""
9505 _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
9513 print("<b>proved</b>")
9515 print("<b>failed to prove</b>")
9518 print("<b>counterexample</b>")
9522def _dict2sarray(sorts, ctx):
9524 _names = (Symbol * sz)()
9525 _sorts = (Sort * sz)()
9530 _z3_assert(isinstance(k, str), "String expected")
9531 _z3_assert(is_sort(v), "Z3 sort expected")
9532 _names[i] = to_symbol(k, ctx)
9535 return sz, _names, _sorts
9538def _dict2darray(decls, ctx):
9540 _names = (Symbol * sz)()
9541 _decls = (FuncDecl * sz)()
9546 _z3_assert(isinstance(k, str), "String expected")
9547 _z3_assert(is_func_decl(v) or is_const(v), "Z3 declaration or constant expected")
9548 _names[i] = to_symbol(k, ctx)
9550 _decls[i] = v.decl().ast
9554 return sz, _names, _decls
9557 def __init__(self, ctx= None):
9558 self.ctx = _get_ctx(ctx)
9559 self.pctx = Z3_mk_parser_context(self.ctx.ref())
9560 Z3_parser_context_inc_ref(self.ctx.ref(), self.pctx)
9563 if self.ctx.ref() is not None and self.pctx is not None and Z3_parser_context_dec_ref is not None:
9564 Z3_parser_context_dec_ref(self.ctx.ref(), self.pctx)
9567 def add_sort(self, sort):
9568 Z3_parser_context_add_sort(self.ctx.ref(), self.pctx, sort.as_ast())
9570 def add_decl(self, decl):
9571 Z3_parser_context_add_decl(self.ctx.ref(), self.pctx, decl.as_ast())
9573 def from_string(self, s):
9574 return AstVector(Z3_parser_context_from_string(self.ctx.ref(), self.pctx, s), self.ctx)
9576def parse_smt2_string(s, sorts={}, decls={}, ctx=None):
9577 """Parse a string in SMT 2.0 format using the given sorts and decls.
9579 The arguments sorts and decls are Python dictionaries used to initialize
9580 the symbol table used for the SMT 2.0 parser.
9582 >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
9584 >>> x, y = Ints('x y')
9585 >>> f = Function('f', IntSort(), IntSort())
9586 >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
9588 >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
9592 ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9593 dsz, dnames, ddecls = _dict2darray(decls, ctx)
9594 return AstVector(Z3_parse_smtlib2_string(ctx.ref(), s, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9597def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
9598 """Parse a file in SMT 2.0 format using the given sorts and decls.
9600 This function is similar to parse_smt2_string().
9603 ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9604 dsz, dnames, ddecls = _dict2darray(decls, ctx)
9605 return AstVector(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9608#########################################
9610# Floating-Point Arithmetic
9612#########################################
9615# Global default rounding mode
9616_dflt_rounding_mode = Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN
9617_dflt_fpsort_ebits = 11
9618_dflt_fpsort_sbits = 53
9621def get_default_rounding_mode(ctx=None):
9622 """Retrieves the global default rounding mode."""
9623 global _dflt_rounding_mode
9624 if _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:
9626 elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:
9628 elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:
9630 elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:
9632 elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:
9636_ROUNDING_MODES = frozenset({
9637 Z3_OP_FPA_RM_TOWARD_ZERO,
9638 Z3_OP_FPA_RM_TOWARD_NEGATIVE,
9639 Z3_OP_FPA_RM_TOWARD_POSITIVE,
9640 Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
9641 Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY
9645def set_default_rounding_mode(rm, ctx=None):
9646 global _dflt_rounding_mode
9647 if is_fprm_value(rm):
9648 _dflt_rounding_mode = rm.kind()
9650 _z3_assert(_dflt_rounding_mode in _ROUNDING_MODES, "illegal rounding mode")
9651 _dflt_rounding_mode = rm
9654def get_default_fp_sort(ctx=None):
9655 return FPSort(_dflt_fpsort_ebits, _dflt_fpsort_sbits, ctx)
9658def set_default_fp_sort(ebits, sbits, ctx=None):
9659 global _dflt_fpsort_ebits
9660 global _dflt_fpsort_sbits
9661 _dflt_fpsort_ebits = ebits
9662 _dflt_fpsort_sbits = sbits
9665def _dflt_rm(ctx=None):
9666 return get_default_rounding_mode(ctx)
9669def _dflt_fps(ctx=None):
9670 return get_default_fp_sort(ctx)
9673def _coerce_fp_expr_list(alist, ctx):
9674 first_fp_sort = None
9677 if first_fp_sort is None:
9678 first_fp_sort = a.sort()
9679 elif first_fp_sort == a.sort():
9680 pass # OK, same as before
9682 # we saw at least 2 different float sorts; something will
9683 # throw a sort mismatch later, for now assume None.
9684 first_fp_sort = None
9688 for i in range(len(alist)):
9690 is_repr = isinstance(a, str) and a.contains("2**(") and a.endswith(")")
9691 if is_repr or _is_int(a) or isinstance(a, (float, bool)):
9692 r.append(FPVal(a, None, first_fp_sort, ctx))
9695 return _coerce_expr_list(r, ctx)
9700class FPSortRef(SortRef):
9701 """Floating-point sort."""
9704 """Retrieves the number of bits reserved for the exponent in the FloatingPoint sort `self`.
9705 >>> b = FPSort(8, 24)
9709 return int(Z3_fpa_get_ebits(self.ctx_ref(), self.ast))
9712 """Retrieves the number of bits reserved for the significand in the FloatingPoint sort `self`.
9713 >>> b = FPSort(8, 24)
9717 return int(Z3_fpa_get_sbits(self.ctx_ref(), self.ast))
9719 def cast(self, val):
9720 """Try to cast `val` as a floating-point expression.
9721 >>> b = FPSort(8, 24)
9724 >>> b.cast(1.0).sexpr()
9725 '(fp #b0 #x7f #b00000000000000000000000)'
9729 _z3_assert(self.ctx == val.ctx, "Context mismatch")
9732 return FPVal(val, None, self, self.ctx)
9735def Float16(ctx=None):
9736 """Floating-point 16-bit (half) sort."""
9738 return FPSortRef(Z3_mk_fpa_sort_16(ctx.ref()), ctx)
9741def FloatHalf(ctx=None):
9742 """Floating-point 16-bit (half) sort."""
9744 return FPSortRef(Z3_mk_fpa_sort_half(ctx.ref()), ctx)
9747def Float32(ctx=None):
9748 """Floating-point 32-bit (single) sort."""
9750 return FPSortRef(Z3_mk_fpa_sort_32(ctx.ref()), ctx)
9753def FloatSingle(ctx=None):
9754 """Floating-point 32-bit (single) sort."""
9756 return FPSortRef(Z3_mk_fpa_sort_single(ctx.ref()), ctx)
9759def Float64(ctx=None):
9760 """Floating-point 64-bit (double) sort."""
9762 return FPSortRef(Z3_mk_fpa_sort_64(ctx.ref()), ctx)
9765def FloatDouble(ctx=None):
9766 """Floating-point 64-bit (double) sort."""
9768 return FPSortRef(Z3_mk_fpa_sort_double(ctx.ref()), ctx)
9771def Float128(ctx=None):
9772 """Floating-point 128-bit (quadruple) sort."""
9774 return FPSortRef(Z3_mk_fpa_sort_128(ctx.ref()), ctx)
9777def FloatQuadruple(ctx=None):
9778 """Floating-point 128-bit (quadruple) sort."""
9780 return FPSortRef(Z3_mk_fpa_sort_quadruple(ctx.ref()), ctx)
9783class FPRMSortRef(SortRef):
9784 """"Floating-point rounding mode sort."""
9788 """Return True if `s` is a Z3 floating-point sort.
9790 >>> is_fp_sort(FPSort(8, 24))
9792 >>> is_fp_sort(IntSort())
9795 return isinstance(s, FPSortRef)
9799 """Return True if `s` is a Z3 floating-point rounding mode sort.
9801 >>> is_fprm_sort(FPSort(8, 24))
9803 >>> is_fprm_sort(RNE().sort())
9806 return isinstance(s, FPRMSortRef)
9811class FPRef(ExprRef):
9812 """Floating-point expressions."""
9815 """Return the sort of the floating-point expression `self`.
9817 >>> x = FP('1.0', FPSort(8, 24))
9820 >>> x.sort() == FPSort(8, 24)
9823 return FPSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
9826 """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`.
9827 >>> b = FPSort(8, 24)
9831 return self.sort().ebits()
9834 """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`.
9835 >>> b = FPSort(8, 24)
9839 return self.sort().sbits()
9841 def as_string(self):
9842 """Return a Z3 floating point expression as a Python string."""
9843 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
9845 def __le__(self, other):
9846 return fpLEQ(self, other, self.ctx)
9848 def __lt__(self, other):
9849 return fpLT(self, other, self.ctx)
9851 def __ge__(self, other):
9852 return fpGEQ(self, other, self.ctx)
9854 def __gt__(self, other):
9855 return fpGT(self, other, self.ctx)
9857 def __add__(self, other):
9858 """Create the Z3 expression `self + other`.
9860 >>> x = FP('x', FPSort(8, 24))
9861 >>> y = FP('y', FPSort(8, 24))
9867 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9868 return fpAdd(_dflt_rm(), a, b, self.ctx)
9870 def __radd__(self, other):
9871 """Create the Z3 expression `other + self`.
9873 >>> x = FP('x', FPSort(8, 24))
9877 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9878 return fpAdd(_dflt_rm(), a, b, self.ctx)
9880 def __sub__(self, other):
9881 """Create the Z3 expression `self - other`.
9883 >>> x = FP('x', FPSort(8, 24))
9884 >>> y = FP('y', FPSort(8, 24))
9890 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9891 return fpSub(_dflt_rm(), a, b, self.ctx)
9893 def __rsub__(self, other):
9894 """Create the Z3 expression `other - self`.
9896 >>> x = FP('x', FPSort(8, 24))
9900 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9901 return fpSub(_dflt_rm(), a, b, self.ctx)
9903 def __mul__(self, other):
9904 """Create the Z3 expression `self * other`.
9906 >>> x = FP('x', FPSort(8, 24))
9907 >>> y = FP('y', FPSort(8, 24))
9915 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9916 return fpMul(_dflt_rm(), a, b, self.ctx)
9918 def __rmul__(self, other):
9919 """Create the Z3 expression `other * self`.
9921 >>> x = FP('x', FPSort(8, 24))
9922 >>> y = FP('y', FPSort(8, 24))
9928 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9929 return fpMul(_dflt_rm(), a, b, self.ctx)
9932 """Create the Z3 expression `+self`."""
9936 """Create the Z3 expression `-self`.
9938 >>> x = FP('x', Float32())
9944 def __div__(self, other):
9945 """Create the Z3 expression `self / other`.
9947 >>> x = FP('x', FPSort(8, 24))
9948 >>> y = FP('y', FPSort(8, 24))
9956 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9957 return fpDiv(_dflt_rm(), a, b, self.ctx)
9959 def __rdiv__(self, other):
9960 """Create the Z3 expression `other / self`.
9962 >>> x = FP('x', FPSort(8, 24))
9963 >>> y = FP('y', FPSort(8, 24))
9969 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9970 return fpDiv(_dflt_rm(), a, b, self.ctx)
9972 def __truediv__(self, other):
9973 """Create the Z3 expression division `self / other`."""
9974 return self.__div__(other)
9976 def __rtruediv__(self, other):
9977 """Create the Z3 expression division `other / self`."""
9978 return self.__rdiv__(other)
9980 def __mod__(self, other):
9981 """Create the Z3 expression mod `self % other`."""
9982 return fpRem(self, other)
9984 def __rmod__(self, other):
9985 """Create the Z3 expression mod `other % self`."""
9986 return fpRem(other, self)
9989class FPRMRef(ExprRef):
9990 """Floating-point rounding mode expressions"""
9992 def as_string(self):
9993 """Return a Z3 floating point expression as a Python string."""
9994 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
9997def RoundNearestTiesToEven(ctx=None):
9999 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
10003 ctx = _get_ctx(ctx)
10004 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
10007def RoundNearestTiesToAway(ctx=None):
10008 ctx = _get_ctx(ctx)
10009 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
10013 ctx = _get_ctx(ctx)
10014 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
10017def RoundTowardPositive(ctx=None):
10018 ctx = _get_ctx(ctx)
10019 return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
10023 ctx = _get_ctx(ctx)
10024 return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
10027def RoundTowardNegative(ctx=None):
10028 ctx = _get_ctx(ctx)
10029 return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
10033 ctx = _get_ctx(ctx)
10034 return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
10037def RoundTowardZero(ctx=None):
10038 ctx = _get_ctx(ctx)
10039 return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
10043 ctx = _get_ctx(ctx)
10044 return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
10048 """Return `True` if `a` is a Z3 floating-point rounding mode expression.
10057 return isinstance(a, FPRMRef)
10060def is_fprm_value(a):
10061 """Return `True` if `a` is a Z3 floating-point rounding mode numeral value."""
10062 return is_fprm(a) and _is_numeral(a.ctx, a.ast)
10067class FPNumRef(FPRef):
10068 """The sign of the numeral.
10070 >>> x = FPVal(+1.0, FPSort(8, 24))
10073 >>> x = FPVal(-1.0, FPSort(8, 24))
10079 num = ctypes.c_bool()
10080 nsign = Z3_fpa_get_numeral_sign(self.ctx.ref(), self.as_ast(), byref(num))
10082 raise Z3Exception("error retrieving the sign of a numeral.")
10083 return num.value != 0
10085 """The sign of a floating-point numeral as a bit-vector expression.
10087 Remark: NaN's are invalid arguments.
10090 def sign_as_bv(self):
10091 return BitVecNumRef(Z3_fpa_get_numeral_sign_bv(self.ctx.ref(), self.as_ast()), self.ctx)
10093 """The significand of the numeral.
10095 >>> x = FPVal(2.5, FPSort(8, 24))
10096 >>> x.significand()
10100 def significand(self):
10101 return Z3_fpa_get_numeral_significand_string(self.ctx.ref(), self.as_ast())
10103 """The significand of the numeral as a long.
10105 >>> x = FPVal(2.5, FPSort(8, 24))
10106 >>> x.significand_as_long()
10110 def significand_as_long(self):
10111 ptr = (ctypes.c_ulonglong * 1)()
10112 if not Z3_fpa_get_numeral_significand_uint64(self.ctx.ref(), self.as_ast(), ptr):
10113 raise Z3Exception("error retrieving the significand of a numeral.")
10116 """The significand of the numeral as a bit-vector expression.
10118 Remark: NaN are invalid arguments.
10121 def significand_as_bv(self):
10122 return BitVecNumRef(Z3_fpa_get_numeral_significand_bv(self.ctx.ref(), self.as_ast()), self.ctx)
10124 """The exponent of the numeral.
10126 >>> x = FPVal(2.5, FPSort(8, 24))
10131 def exponent(self, biased=True):
10132 return Z3_fpa_get_numeral_exponent_string(self.ctx.ref(), self.as_ast(), biased)
10134 """The exponent of the numeral as a long.
10136 >>> x = FPVal(2.5, FPSort(8, 24))
10137 >>> x.exponent_as_long()
10141 def exponent_as_long(self, biased=True):
10142 ptr = (ctypes.c_longlong * 1)()
10143 if not Z3_fpa_get_numeral_exponent_int64(self.ctx.ref(), self.as_ast(), ptr, biased):
10144 raise Z3Exception("error retrieving the exponent of a numeral.")
10147 """The exponent of the numeral as a bit-vector expression.
10149 Remark: NaNs are invalid arguments.
10152 def exponent_as_bv(self, biased=True):
10153 return BitVecNumRef(Z3_fpa_get_numeral_exponent_bv(self.ctx.ref(), self.as_ast(), biased), self.ctx)
10155 """Indicates whether the numeral is a NaN."""
10158 return Z3_fpa_is_numeral_nan(self.ctx.ref(), self.as_ast())
10160 """Indicates whether the numeral is +oo or -oo."""
10163 return Z3_fpa_is_numeral_inf(self.ctx.ref(), self.as_ast())
10165 """Indicates whether the numeral is +zero or -zero."""
10168 return Z3_fpa_is_numeral_zero(self.ctx.ref(), self.as_ast())
10170 """Indicates whether the numeral is normal."""
10172 def isNormal(self):
10173 return Z3_fpa_is_numeral_normal(self.ctx.ref(), self.as_ast())
10175 """Indicates whether the numeral is subnormal."""
10177 def isSubnormal(self):
10178 return Z3_fpa_is_numeral_subnormal(self.ctx.ref(), self.as_ast())
10180 """Indicates whether the numeral is positive."""
10182 def isPositive(self):
10183 return Z3_fpa_is_numeral_positive(self.ctx.ref(), self.as_ast())
10185 """Indicates whether the numeral is negative."""
10187 def isNegative(self):
10188 return Z3_fpa_is_numeral_negative(self.ctx.ref(), self.as_ast())
10191 The string representation of the numeral.
10193 >>> x = FPVal(20, FPSort(8, 24))
10198 def as_string(self):
10199 s = Z3_get_numeral_string(self.ctx.ref(), self.as_ast())
10200 return ("FPVal(%s, %s)" % (s, self.sort()))
10202 def py_value(self):
10203 bv = simplify(fpToIEEEBV(self))
10204 binary = bv.py_value()
10205 if not isinstance(binary, int):
10207 # Decode the IEEE 754 binary representation
10209 bytes_rep = binary.to_bytes(8, byteorder='big')
10210 return struct.unpack('>d', bytes_rep)[0]
10214 """Return `True` if `a` is a Z3 floating-point expression.
10216 >>> b = FP('b', FPSort(8, 24))
10221 >>> is_fp(Int('x'))
10224 return isinstance(a, FPRef)
10228 """Return `True` if `a` is a Z3 floating-point numeral value.
10230 >>> b = FP('b', FPSort(8, 24))
10233 >>> b = FPVal(1.0, FPSort(8, 24))
10239 return is_fp(a) and _is_numeral(a.ctx, a.ast)
10242def FPSort(ebits, sbits, ctx=None):
10243 """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.
10245 >>> Single = FPSort(8, 24)
10246 >>> Double = FPSort(11, 53)
10249 >>> x = Const('x', Single)
10250 >>> eq(x, FP('x', FPSort(8, 24)))
10253 ctx = _get_ctx(ctx)
10254 return FPSortRef(Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
10257def _to_float_str(val, exp=0):
10258 if isinstance(val, float):
10259 if math.isnan(val):
10262 sone = math.copysign(1.0, val)
10267 elif val == float("+inf"):
10269 elif val == float("-inf"):
10272 v = val.as_integer_ratio()
10275 rvs = str(num) + "/" + str(den)
10276 res = rvs + "p" + _to_int_str(exp)
10277 elif isinstance(val, bool):
10284 elif isinstance(val, str):
10285 inx = val.find("*(2**")
10288 elif val[-1] == ")":
10290 exp = str(int(val[inx + 5:-1]) + int(exp))
10292 _z3_assert(False, "String does not have floating-point numeral form.")
10294 _z3_assert(False, "Python value cannot be used to create floating-point numerals.")
10298 return res + "p" + exp
10302 """Create a Z3 floating-point NaN term.
10304 >>> s = FPSort(8, 24)
10305 >>> set_fpa_pretty(True)
10308 >>> pb = get_fpa_pretty()
10309 >>> set_fpa_pretty(False)
10311 fpNaN(FPSort(8, 24))
10312 >>> set_fpa_pretty(pb)
10314 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10315 return FPNumRef(Z3_mk_fpa_nan(s.ctx_ref(), s.ast), s.ctx)
10318def fpPlusInfinity(s):
10319 """Create a Z3 floating-point +oo term.
10321 >>> s = FPSort(8, 24)
10322 >>> pb = get_fpa_pretty()
10323 >>> set_fpa_pretty(True)
10324 >>> fpPlusInfinity(s)
10326 >>> set_fpa_pretty(False)
10327 >>> fpPlusInfinity(s)
10328 fpPlusInfinity(FPSort(8, 24))
10329 >>> set_fpa_pretty(pb)
10331 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10332 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, False), s.ctx)
10335def fpMinusInfinity(s):
10336 """Create a Z3 floating-point -oo term."""
10337 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10338 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, True), s.ctx)
10341def fpInfinity(s, negative):
10342 """Create a Z3 floating-point +oo or -oo term."""
10343 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10344 _z3_assert(isinstance(negative, bool), "expected Boolean flag")
10345 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, negative), s.ctx)
10349 """Create a Z3 floating-point +0.0 term."""
10350 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10351 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, False), s.ctx)
10355 """Create a Z3 floating-point -0.0 term."""
10356 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10357 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, True), s.ctx)
10360def fpZero(s, negative):
10361 """Create a Z3 floating-point +0.0 or -0.0 term."""
10362 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10363 _z3_assert(isinstance(negative, bool), "expected Boolean flag")
10364 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, negative), s.ctx)
10367def FPVal(sig, exp=None, fps=None, ctx=None):
10368 """Return a floating-point value of value `val` and sort `fps`.
10369 If `ctx=None`, then the global context is used.
10371 >>> v = FPVal(20.0, FPSort(8, 24))
10374 >>> print("0x%.8x" % v.exponent_as_long(False))
10376 >>> v = FPVal(2.25, FPSort(8, 24))
10379 >>> v = FPVal(-2.25, FPSort(8, 24))
10382 >>> FPVal(-0.0, FPSort(8, 24))
10384 >>> FPVal(0.0, FPSort(8, 24))
10386 >>> FPVal(+0.0, FPSort(8, 24))
10389 ctx = _get_ctx(ctx)
10390 if is_fp_sort(exp):
10394 fps = _dflt_fps(ctx)
10395 _z3_assert(is_fp_sort(fps), "sort mismatch")
10398 val = _to_float_str(sig)
10399 if val == "NaN" or val == "nan":
10401 elif val == "-0.0":
10402 return fpMinusZero(fps)
10403 elif val == "0.0" or val == "+0.0":
10404 return fpPlusZero(fps)
10405 elif val == "+oo" or val == "+inf" or val == "+Inf":
10406 return fpPlusInfinity(fps)
10407 elif val == "-oo" or val == "-inf" or val == "-Inf":
10408 return fpMinusInfinity(fps)
10410 return FPNumRef(Z3_mk_numeral(ctx.ref(), val, fps.ast), ctx)
10413def FP(name, fpsort, ctx=None):
10414 """Return a floating-point constant named `name`.
10415 `fpsort` is the floating-point sort.
10416 If `ctx=None`, then the global context is used.
10418 >>> x = FP('x', FPSort(8, 24))
10425 >>> word = FPSort(8, 24)
10426 >>> x2 = FP('x', word)
10430 if isinstance(fpsort, FPSortRef) and ctx is None:
10433 ctx = _get_ctx(ctx)
10434 return FPRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), fpsort.ast), ctx)
10437def FPs(names, fpsort, ctx=None):
10438 """Return an array of floating-point constants.
10440 >>> x, y, z = FPs('x y z', FPSort(8, 24))
10447 >>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
10450 ctx = _get_ctx(ctx)
10451 if isinstance(names, str):
10452 names = names.split(" ")
10453 return [FP(name, fpsort, ctx) for name in names]
10456def fpAbs(a, ctx=None):
10457 """Create a Z3 floating-point absolute value expression.
10459 >>> s = FPSort(8, 24)
10461 >>> x = FPVal(1.0, s)
10464 >>> y = FPVal(-20.0, s)
10468 fpAbs(-1.25*(2**4))
10469 >>> fpAbs(-1.25*(2**4))
10470 fpAbs(-1.25*(2**4))
10471 >>> fpAbs(x).sort()
10474 ctx = _get_ctx(ctx)
10475 [a] = _coerce_fp_expr_list([a], ctx)
10476 return FPRef(Z3_mk_fpa_abs(ctx.ref(), a.as_ast()), ctx)
10479def fpNeg(a, ctx=None):
10480 """Create a Z3 floating-point addition expression.
10482 >>> s = FPSort(8, 24)
10487 >>> fpNeg(x).sort()
10490 ctx = _get_ctx(ctx)
10491 [a] = _coerce_fp_expr_list([a], ctx)
10492 return FPRef(Z3_mk_fpa_neg(ctx.ref(), a.as_ast()), ctx)
10495def _mk_fp_unary(f, rm, a, ctx):
10496 ctx = _get_ctx(ctx)
10497 [a] = _coerce_fp_expr_list([a], ctx)
10499 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10500 _z3_assert(is_fp(a), "Second argument must be a Z3 floating-point expression")
10501 return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast()), ctx)
10504def _mk_fp_unary_pred(f, a, ctx):
10505 ctx = _get_ctx(ctx)
10506 [a] = _coerce_fp_expr_list([a], ctx)
10508 _z3_assert(is_fp(a), "First argument must be a Z3 floating-point expression")
10509 return BoolRef(f(ctx.ref(), a.as_ast()), ctx)
10512def _mk_fp_bin(f, rm, a, b, ctx):
10513 ctx = _get_ctx(ctx)
10514 [a, b] = _coerce_fp_expr_list([a, b], ctx)
10516 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10517 _z3_assert(is_fp(a) or is_fp(b), "Second or third argument must be a Z3 floating-point expression")
10518 return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast()), ctx)
10521def _mk_fp_bin_norm(f, a, b, ctx):
10522 ctx = _get_ctx(ctx)
10523 [a, b] = _coerce_fp_expr_list([a, b], ctx)
10525 _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
10526 return FPRef(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
10529def _mk_fp_bin_pred(f, a, b, ctx):
10530 ctx = _get_ctx(ctx)
10531 [a, b] = _coerce_fp_expr_list([a, b], ctx)
10533 _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
10534 return BoolRef(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
10537def _mk_fp_tern(f, rm, a, b, c, ctx):
10538 ctx = _get_ctx(ctx)
10539 [a, b, c] = _coerce_fp_expr_list([a, b, c], ctx)
10541 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10542 _z3_assert(is_fp(a) or is_fp(b) or is_fp(
10543 c), "Second, third or fourth argument must be a Z3 floating-point expression")
10544 return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
10547def fpAdd(rm, a, b, ctx=None):
10548 """Create a Z3 floating-point addition expression.
10550 >>> s = FPSort(8, 24)
10554 >>> fpAdd(rm, x, y)
10556 >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
10558 >>> fpAdd(rm, x, y).sort()
10561 return _mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)
10564def fpSub(rm, a, b, ctx=None):
10565 """Create a Z3 floating-point subtraction expression.
10567 >>> s = FPSort(8, 24)
10571 >>> fpSub(rm, x, y)
10573 >>> fpSub(rm, x, y).sort()
10576 return _mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)
10579def fpMul(rm, a, b, ctx=None):
10580 """Create a Z3 floating-point multiplication expression.
10582 >>> s = FPSort(8, 24)
10586 >>> fpMul(rm, x, y)
10588 >>> fpMul(rm, x, y).sort()
10591 return _mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)
10594def fpDiv(rm, a, b, ctx=None):
10595 """Create a Z3 floating-point division expression.
10597 >>> s = FPSort(8, 24)
10601 >>> fpDiv(rm, x, y)
10603 >>> fpDiv(rm, x, y).sort()
10606 return _mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)
10609def fpRem(a, b, ctx=None):
10610 """Create a Z3 floating-point remainder expression.
10612 >>> s = FPSort(8, 24)
10617 >>> fpRem(x, y).sort()
10620 return _mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)
10623def fpMin(a, b, ctx=None):
10624 """Create a Z3 floating-point minimum expression.
10626 >>> s = FPSort(8, 24)
10632 >>> fpMin(x, y).sort()
10635 return _mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)
10638def fpMax(a, b, ctx=None):
10639 """Create a Z3 floating-point maximum expression.
10641 >>> s = FPSort(8, 24)
10647 >>> fpMax(x, y).sort()
10650 return _mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)
10653def fpFMA(rm, a, b, c, ctx=None):
10654 """Create a Z3 floating-point fused multiply-add expression.
10656 return _mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)
10659def fpSqrt(rm, a, ctx=None):
10660 """Create a Z3 floating-point square root expression.
10662 return _mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)
10665def fpRoundToIntegral(rm, a, ctx=None):
10666 """Create a Z3 floating-point roundToIntegral expression.
10668 return _mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)
10671def fpIsNaN(a, ctx=None):
10672 """Create a Z3 floating-point isNaN expression.
10674 >>> s = FPSort(8, 24)
10680 return _mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)
10683def fpIsInf(a, ctx=None):
10684 """Create a Z3 floating-point isInfinite expression.
10686 >>> s = FPSort(8, 24)
10691 return _mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)
10694def fpIsZero(a, ctx=None):
10695 """Create a Z3 floating-point isZero expression.
10697 return _mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)
10700def fpIsNormal(a, ctx=None):
10701 """Create a Z3 floating-point isNormal expression.
10703 return _mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)
10706def fpIsSubnormal(a, ctx=None):
10707 """Create a Z3 floating-point isSubnormal expression.
10709 return _mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)
10712def fpIsNegative(a, ctx=None):
10713 """Create a Z3 floating-point isNegative expression.
10715 return _mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)
10718def fpIsPositive(a, ctx=None):
10719 """Create a Z3 floating-point isPositive expression.
10721 return _mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)
10724def _check_fp_args(a, b):
10726 _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
10729def fpLT(a, b, ctx=None):
10730 """Create the Z3 floating-point expression `other < self`.
10732 >>> x, y = FPs('x y', FPSort(8, 24))
10735 >>> (x < y).sexpr()
10738 return _mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)
10741def fpLEQ(a, b, ctx=None):
10742 """Create the Z3 floating-point expression `other <= self`.
10744 >>> x, y = FPs('x y', FPSort(8, 24))
10747 >>> (x <= y).sexpr()
10750 return _mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)
10753def fpGT(a, b, ctx=None):
10754 """Create the Z3 floating-point expression `other > self`.
10756 >>> x, y = FPs('x y', FPSort(8, 24))
10759 >>> (x > y).sexpr()
10762 return _mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)
10765def fpGEQ(a, b, ctx=None):
10766 """Create the Z3 floating-point expression `other >= self`.
10768 >>> x, y = FPs('x y', FPSort(8, 24))
10771 >>> (x >= y).sexpr()
10774 return _mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)
10777def fpEQ(a, b, ctx=None):
10778 """Create the Z3 floating-point expression `fpEQ(other, self)`.
10780 >>> x, y = FPs('x y', FPSort(8, 24))
10783 >>> fpEQ(x, y).sexpr()
10786 return _mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)
10789def fpNEQ(a, b, ctx=None):
10790 """Create the Z3 floating-point expression `Not(fpEQ(other, self))`.
10792 >>> x, y = FPs('x y', FPSort(8, 24))
10795 >>> (x != y).sexpr()
10798 return Not(fpEQ(a, b, ctx))
10801def fpFP(sgn, exp, sig, ctx=None):
10802 """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.
10804 >>> s = FPSort(8, 24)
10805 >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
10807 fpFP(1, 127, 4194304)
10808 >>> xv = FPVal(-1.5, s)
10811 >>> slvr = Solver()
10812 >>> slvr.add(fpEQ(x, xv))
10815 >>> xv = FPVal(+1.5, s)
10818 >>> slvr = Solver()
10819 >>> slvr.add(fpEQ(x, xv))
10823 _z3_assert(is_bv(sgn) and is_bv(exp) and is_bv(sig), "sort mismatch")
10824 _z3_assert(sgn.sort().size() == 1, "sort mismatch")
10825 ctx = _get_ctx(ctx)
10826 _z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx, "context mismatch")
10827 return FPRef(Z3_mk_fpa_fp(ctx.ref(), sgn.ast, exp.ast, sig.ast), ctx)
10830def fpToFP(a1, a2=None, a3=None, ctx=None):
10831 """Create a Z3 floating-point conversion expression from other term sorts
10834 From a bit-vector term in IEEE 754-2008 format:
10835 >>> x = FPVal(1.0, Float32())
10836 >>> x_bv = fpToIEEEBV(x)
10837 >>> simplify(fpToFP(x_bv, Float32()))
10840 From a floating-point term with different precision:
10841 >>> x = FPVal(1.0, Float32())
10842 >>> x_db = fpToFP(RNE(), x, Float64())
10847 >>> x_r = RealVal(1.5)
10848 >>> simplify(fpToFP(RNE(), x_r, Float32()))
10851 From a signed bit-vector term:
10852 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10853 >>> simplify(fpToFP(RNE(), x_signed, Float32()))
10856 ctx = _get_ctx(ctx)
10857 if is_bv(a1) and is_fp_sort(a2):
10858 return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), a1.ast, a2.ast), ctx)
10859 elif is_fprm(a1) and is_fp(a2) and is_fp_sort(a3):
10860 return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10861 elif is_fprm(a1) and is_real(a2) and is_fp_sort(a3):
10862 return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10863 elif is_fprm(a1) and is_bv(a2) and is_fp_sort(a3):
10864 return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10866 raise Z3Exception("Unsupported combination of arguments for conversion to floating-point term.")
10869def fpBVToFP(v, sort, ctx=None):
10870 """Create a Z3 floating-point conversion expression that represents the
10871 conversion from a bit-vector term to a floating-point term.
10873 >>> x_bv = BitVecVal(0x3F800000, 32)
10874 >>> x_fp = fpBVToFP(x_bv, Float32())
10880 _z3_assert(is_bv(v), "First argument must be a Z3 bit-vector expression")
10881 _z3_assert(is_fp_sort(sort), "Second argument must be a Z3 floating-point sort.")
10882 ctx = _get_ctx(ctx)
10883 return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), v.ast, sort.ast), ctx)
10886def fpFPToFP(rm, v, sort, ctx=None):
10887 """Create a Z3 floating-point conversion expression that represents the
10888 conversion from a floating-point term to a floating-point term of different precision.
10890 >>> x_sgl = FPVal(1.0, Float32())
10891 >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
10894 >>> simplify(x_dbl)
10899 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10900 _z3_assert(is_fp(v), "Second argument must be a Z3 floating-point expression.")
10901 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10902 ctx = _get_ctx(ctx)
10903 return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10906def fpRealToFP(rm, v, sort, ctx=None):
10907 """Create a Z3 floating-point conversion expression that represents the
10908 conversion from a real term to a floating-point term.
10910 >>> x_r = RealVal(1.5)
10911 >>> x_fp = fpRealToFP(RNE(), x_r, Float32())
10917 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10918 _z3_assert(is_real(v), "Second argument must be a Z3 expression or real sort.")
10919 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10920 ctx = _get_ctx(ctx)
10921 return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10924def fpSignedToFP(rm, v, sort, ctx=None):
10925 """Create a Z3 floating-point conversion expression that represents the
10926 conversion from a signed bit-vector term (encoding an integer) to a floating-point term.
10928 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10929 >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
10931 fpToFP(RNE(), 4294967291)
10935 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10936 _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10937 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10938 ctx = _get_ctx(ctx)
10939 return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10942def fpUnsignedToFP(rm, v, sort, ctx=None):
10943 """Create a Z3 floating-point conversion expression that represents the
10944 conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.
10946 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10947 >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
10949 fpToFPUnsigned(RNE(), 4294967291)
10953 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10954 _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10955 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10956 ctx = _get_ctx(ctx)
10957 return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10960def fpToFPUnsigned(rm, x, s, ctx=None):
10961 """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression."""
10963 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10964 _z3_assert(is_bv(x), "Second argument must be a Z3 bit-vector expression")
10965 _z3_assert(is_fp_sort(s), "Third argument must be Z3 floating-point sort")
10966 ctx = _get_ctx(ctx)
10967 return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, x.ast, s.ast), ctx)
10970def fpToSBV(rm, x, s, ctx=None):
10971 """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.
10973 >>> x = FP('x', FPSort(8, 24))
10974 >>> y = fpToSBV(RTZ(), x, BitVecSort(32))
10975 >>> print(is_fp(x))
10977 >>> print(is_bv(y))
10979 >>> print(is_fp(y))
10981 >>> print(is_bv(x))
10985 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10986 _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10987 _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10988 ctx = _get_ctx(ctx)
10989 return BitVecRef(Z3_mk_fpa_to_sbv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10992def fpToUBV(rm, x, s, ctx=None):
10993 """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.
10995 >>> x = FP('x', FPSort(8, 24))
10996 >>> y = fpToUBV(RTZ(), x, BitVecSort(32))
10997 >>> print(is_fp(x))
10999 >>> print(is_bv(y))
11001 >>> print(is_fp(y))
11003 >>> print(is_bv(x))
11007 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
11008 _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
11009 _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
11010 ctx = _get_ctx(ctx)
11011 return BitVecRef(Z3_mk_fpa_to_ubv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
11014def fpToReal(x, ctx=None):
11015 """Create a Z3 floating-point conversion expression, from floating-point expression to real.
11017 >>> x = FP('x', FPSort(8, 24))
11018 >>> y = fpToReal(x)
11019 >>> print(is_fp(x))
11021 >>> print(is_real(y))
11023 >>> print(is_fp(y))
11025 >>> print(is_real(x))
11029 _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
11030 ctx = _get_ctx(ctx)
11031 return ArithRef(Z3_mk_fpa_to_real(ctx.ref(), x.ast), ctx)
11034def fpToIEEEBV(x, ctx=None):
11035 """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
11037 The size of the resulting bit-vector is automatically determined.
11039 Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
11040 knows only one NaN and it will always produce the same bit-vector representation of
11043 >>> x = FP('x', FPSort(8, 24))
11044 >>> y = fpToIEEEBV(x)
11045 >>> print(is_fp(x))
11047 >>> print(is_bv(y))
11049 >>> print(is_fp(y))
11051 >>> print(is_bv(x))
11055 _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
11056 ctx = _get_ctx(ctx)
11057 return BitVecRef(Z3_mk_fpa_to_ieee_bv(ctx.ref(), x.ast), ctx)
11060#########################################
11062# Strings, Sequences and Regular expressions
11064#########################################
11066class SeqSortRef(SortRef):
11067 """Sequence sort."""
11069 def is_string(self):
11070 """Determine if sort is a string
11071 >>> s = StringSort()
11074 >>> s = SeqSort(IntSort())
11078 return Z3_is_string_sort(self.ctx_ref(), self.ast)
11081 return _to_sort_ref(Z3_get_seq_sort_basis(self.ctx_ref(), self.ast), self.ctx)
11083class CharSortRef(SortRef):
11084 """Character sort."""
11087def StringSort(ctx=None):
11088 """Create a string sort
11089 >>> s = StringSort()
11093 ctx = _get_ctx(ctx)
11094 return SeqSortRef(Z3_mk_string_sort(ctx.ref()), ctx)
11096def CharSort(ctx=None):
11097 """Create a character sort
11098 >>> ch = CharSort()
11102 ctx = _get_ctx(ctx)
11103 return CharSortRef(Z3_mk_char_sort(ctx.ref()), ctx)
11107 """Create a sequence sort over elements provided in the argument
11108 >>> s = SeqSort(IntSort())
11109 >>> s == Unit(IntVal(1)).sort()
11112 return SeqSortRef(Z3_mk_seq_sort(s.ctx_ref(), s.ast), s.ctx)
11115class SeqRef(ExprRef):
11116 """Sequence expression."""
11119 return SeqSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
11121 def __add__(self, other):
11122 return Concat(self, other)
11124 def __radd__(self, other):
11125 return Concat(other, self)
11127 def __getitem__(self, i):
11129 i = IntVal(i, self.ctx)
11130 return _to_expr_ref(Z3_mk_seq_nth(self.ctx_ref(), self.as_ast(), i.as_ast()), self.ctx)
11134 i = IntVal(i, self.ctx)
11135 return SeqRef(Z3_mk_seq_at(self.ctx_ref(), self.as_ast(), i.as_ast()), self.ctx)
11137 def is_string(self):
11138 return Z3_is_string_sort(self.ctx_ref(), Z3_get_sort(self.ctx_ref(), self.as_ast()))
11140 def is_string_value(self):
11141 return Z3_is_string(self.ctx_ref(), self.as_ast())
11143 def as_string(self):
11144 """Return a string representation of sequence expression."""
11145 if self.is_string_value():
11146 string_length = ctypes.c_uint()
11147 chars = Z3_get_lstring(self.ctx_ref(), self.as_ast(), byref(string_length))
11148 return string_at(chars, size=string_length.value).decode("latin-1")
11149 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
11151 def py_value(self):
11152 return self.as_string()
11154 def __le__(self, other):
11155 return _to_expr_ref(Z3_mk_str_le(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
11157 def __lt__(self, other):
11158 return _to_expr_ref(Z3_mk_str_lt(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
11160 def __ge__(self, other):
11161 return _to_expr_ref(Z3_mk_str_le(self.ctx_ref(), other.as_ast(), self.as_ast()), self.ctx)
11163 def __gt__(self, other):
11164 return _to_expr_ref(Z3_mk_str_lt(self.ctx_ref(), other.as_ast(), self.as_ast()), self.ctx)
11167def _coerce_char(ch, ctx=None):
11168 if isinstance(ch, str):
11169 ctx = _get_ctx(ctx)
11170 ch = CharVal(ch, ctx)
11171 if not is_expr(ch):
11172 raise Z3Exception("Character expression expected")
11175class CharRef(ExprRef):
11176 """Character expression."""
11178 def __le__(self, other):
11179 other = _coerce_char(other, self.ctx)
11180 return _to_expr_ref(Z3_mk_char_le(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
11183 return _to_expr_ref(Z3_mk_char_to_int(self.ctx_ref(), self.as_ast()), self.ctx)
11186 return _to_expr_ref(Z3_mk_char_to_bv(self.ctx_ref(), self.as_ast()), self.ctx)
11188 def is_digit(self):
11189 return _to_expr_ref(Z3_mk_char_is_digit(self.ctx_ref(), self.as_ast()), self.ctx)
11192def CharVal(ch, ctx=None):
11193 ctx = _get_ctx(ctx)
11194 if isinstance(ch, str):
11196 if not isinstance(ch, int):
11197 raise Z3Exception("character value should be an ordinal")
11198 return _to_expr_ref(Z3_mk_char(ctx.ref(), ch), ctx)
11201 if not is_expr(bv):
11202 raise Z3Exception("Bit-vector expression needed")
11203 return _to_expr_ref(Z3_mk_char_from_bv(bv.ctx_ref(), bv.as_ast()), bv.ctx)
11205def CharToBv(ch, ctx=None):
11206 ch = _coerce_char(ch, ctx)
11209def CharToInt(ch, ctx=None):
11210 ch = _coerce_char(ch, ctx)
11213def CharIsDigit(ch, ctx=None):
11214 ch = _coerce_char(ch, ctx)
11215 return ch.is_digit()
11217def _coerce_seq(s, ctx=None):
11218 if isinstance(s, str):
11219 ctx = _get_ctx(ctx)
11220 s = StringVal(s, ctx)
11222 raise Z3Exception("Non-expression passed as a sequence")
11224 raise Z3Exception("Non-sequence passed as a sequence")
11228def _get_ctx2(a, b, ctx=None):
11239 """Return `True` if `a` is a Z3 sequence expression.
11240 >>> print (is_seq(Unit(IntVal(0))))
11242 >>> print (is_seq(StringVal("abc")))
11245 return isinstance(a, SeqRef)
11248def is_string(a: Any) -> bool:
11249 """Return `True` if `a` is a Z3 string expression.
11250 >>> print (is_string(StringVal("ab")))
11253 return isinstance(a, SeqRef) and a.is_string()
11256def is_string_value(a: Any) -> bool:
11257 """return 'True' if 'a' is a Z3 string constant expression.
11258 >>> print (is_string_value(StringVal("a")))
11260 >>> print (is_string_value(StringVal("a") + StringVal("b")))
11263 return isinstance(a, SeqRef) and a.is_string_value()
11265def StringVal(s, ctx=None):
11266 """create a string expression"""
11267 s = "".join(str(ch) if 32 <= ord(ch) and ord(ch) < 127 else "\\u{%x}" % (ord(ch)) for ch in s)
11268 ctx = _get_ctx(ctx)
11269 return SeqRef(Z3_mk_string(ctx.ref(), s), ctx)
11272def String(name, ctx=None):
11273 """Return a string constant named `name`. If `ctx=None`, then the global context is used.
11275 >>> x = String('x')
11277 ctx = _get_ctx(ctx)
11278 return SeqRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), StringSort(ctx).ast), ctx)
11281def Strings(names, ctx=None):
11282 """Return a tuple of String constants. """
11283 ctx = _get_ctx(ctx)
11284 if isinstance(names, str):
11285 names = names.split(" ")
11286 return [String(name, ctx) for name in names]
11289def SubString(s, offset, length):
11290 """Extract substring or subsequence starting at offset.
11292 This is a convenience function that redirects to Extract(s, offset, length).
11294 >>> s = StringVal("hello world")
11295 >>> SubString(s, 6, 5) # Extract "world"
11296 str.substr("hello world", 6, 5)
11297 >>> simplify(SubString(StringVal("hello"), 1, 3))
11300 return Extract(s, offset, length)
11303def SubSeq(s, offset, length):
11304 """Extract substring or subsequence starting at offset.
11306 This is a convenience function that redirects to Extract(s, offset, length).
11308 >>> s = StringVal("hello world")
11309 >>> SubSeq(s, 0, 5) # Extract "hello"
11310 str.substr("hello world", 0, 5)
11311 >>> simplify(SubSeq(StringVal("testing"), 2, 4))
11314 return Extract(s, offset, length)
11318 """Create the empty sequence of the given sort
11319 >>> e = Empty(StringSort())
11320 >>> e2 = StringVal("")
11321 >>> print(e.eq(e2))
11323 >>> e3 = Empty(SeqSort(IntSort()))
11326 >>> e4 = Empty(ReSort(SeqSort(IntSort())))
11328 Empty(ReSort(Seq(Int)))
11330 if isinstance(s, SeqSortRef):
11331 return SeqRef(Z3_mk_seq_empty(s.ctx_ref(), s.ast), s.ctx)
11332 if isinstance(s, ReSortRef):
11333 return ReRef(Z3_mk_re_empty(s.ctx_ref(), s.ast), s.ctx)
11334 raise Z3Exception("Non-sequence, non-regular expression sort passed to Empty")
11338 """Create the regular expression that accepts the universal language
11339 >>> e = Full(ReSort(SeqSort(IntSort())))
11341 Full(ReSort(Seq(Int)))
11342 >>> e1 = Full(ReSort(StringSort()))
11344 Full(ReSort(String))
11346 if isinstance(s, ReSortRef):
11347 return ReRef(Z3_mk_re_full(s.ctx_ref(), s.ast), s.ctx)
11348 raise Z3Exception("Non-sequence, non-regular expression sort passed to Full")
11353 """Create a singleton sequence"""
11354 return SeqRef(Z3_mk_seq_unit(a.ctx_ref(), a.as_ast()), a.ctx)
11358 """Check if 'a' is a prefix of 'b'
11359 >>> s1 = PrefixOf("ab", "abc")
11362 >>> s2 = PrefixOf("bc", "abc")
11366 ctx = _get_ctx2(a, b)
11367 a = _coerce_seq(a, ctx)
11368 b = _coerce_seq(b, ctx)
11369 return BoolRef(Z3_mk_seq_prefix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11373 """Check if 'a' is a suffix of 'b'
11374 >>> s1 = SuffixOf("ab", "abc")
11377 >>> s2 = SuffixOf("bc", "abc")
11381 ctx = _get_ctx2(a, b)
11382 a = _coerce_seq(a, ctx)
11383 b = _coerce_seq(b, ctx)
11384 return BoolRef(Z3_mk_seq_suffix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11388 """Check if 'a' contains 'b'
11389 >>> s1 = Contains("abc", "ab")
11392 >>> s2 = Contains("abc", "bc")
11395 >>> x, y, z = Strings('x y z')
11396 >>> s3 = Contains(Concat(x,y,z), y)
11400 ctx = _get_ctx2(a, b)
11401 a = _coerce_seq(a, ctx)
11402 b = _coerce_seq(b, ctx)
11403 return BoolRef(Z3_mk_seq_contains(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11406def Replace(s, src, dst):
11407 """Replace the first occurrence of 'src' by 'dst' in 's'
11408 >>> r = Replace("aaa", "a", "b")
11412 ctx = _get_ctx2(dst, s)
11413 if ctx is None and is_expr(src):
11415 src = _coerce_seq(src, ctx)
11416 dst = _coerce_seq(dst, ctx)
11417 s = _coerce_seq(s, ctx)
11418 return SeqRef(Z3_mk_seq_replace(src.ctx_ref(), s.as_ast(), src.as_ast(), dst.as_ast()), s.ctx)
11421def IndexOf(s, substr, offset=None):
11422 """Retrieve the index of substring within a string starting at a specified offset.
11423 >>> simplify(IndexOf("abcabc", "bc", 0))
11425 >>> simplify(IndexOf("abcabc", "bc", 2))
11431 if is_expr(offset):
11433 ctx = _get_ctx2(s, substr, ctx)
11434 s = _coerce_seq(s, ctx)
11435 substr = _coerce_seq(substr, ctx)
11436 if _is_int(offset):
11437 offset = IntVal(offset, ctx)
11438 return ArithRef(Z3_mk_seq_index(s.ctx_ref(), s.as_ast(), substr.as_ast(), offset.as_ast()), s.ctx)
11441def LastIndexOf(s, substr):
11442 """Retrieve the last index of substring within a string"""
11444 ctx = _get_ctx2(s, substr, ctx)
11445 s = _coerce_seq(s, ctx)
11446 substr = _coerce_seq(substr, ctx)
11447 return ArithRef(Z3_mk_seq_last_index(s.ctx_ref(), s.as_ast(), substr.as_ast()), s.ctx)
11451 """Obtain the length of a sequence 's'
11452 >>> l = Length(StringVal("abc"))
11457 return ArithRef(Z3_mk_seq_length(s.ctx_ref(), s.as_ast()), s.ctx)
11460 """Map function 'f' over sequence 's'"""
11461 ctx = _get_ctx2(f, s)
11462 s = _coerce_seq(s, ctx)
11463 return _to_expr_ref(Z3_mk_seq_map(s.ctx_ref(), f.as_ast(), s.as_ast()), ctx)
11465def SeqMapI(f, i, s):
11466 """Map function 'f' over sequence 's' at index 'i'"""
11467 ctx = _get_ctx2(f, s)
11468 s = _coerce_seq(s, ctx)
11471 return _to_expr_ref(Z3_mk_seq_mapi(s.ctx_ref(), f.as_ast(), i.as_ast(), s.as_ast()), ctx)
11473def SeqFoldLeft(f, a, s):
11474 ctx = _get_ctx2(f, s)
11475 s = _coerce_seq(s, ctx)
11477 return _to_expr_ref(Z3_mk_seq_foldl(s.ctx_ref(), f.as_ast(), a.as_ast(), s.as_ast()), ctx)
11479def SeqFoldLeftI(f, i, a, s):
11480 ctx = _get_ctx2(f, s)
11481 s = _coerce_seq(s, ctx)
11484 return _to_expr_ref(Z3_mk_seq_foldli(s.ctx_ref(), f.as_ast(), i.as_ast(), a.as_ast(), s.as_ast()), ctx)
11487 """Convert string expression to integer
11488 >>> a = StrToInt("1")
11489 >>> simplify(1 == a)
11491 >>> b = StrToInt("2")
11492 >>> simplify(1 == b)
11494 >>> c = StrToInt(IntToStr(2))
11495 >>> simplify(1 == c)
11499 return ArithRef(Z3_mk_str_to_int(s.ctx_ref(), s.as_ast()), s.ctx)
11503 """Convert integer expression to string"""
11506 return SeqRef(Z3_mk_int_to_str(s.ctx_ref(), s.as_ast()), s.ctx)
11510 """Convert a unit length string to integer code"""
11513 return ArithRef(Z3_mk_string_to_code(s.ctx_ref(), s.as_ast()), s.ctx)
11516 """Convert code to a string"""
11519 return SeqRef(Z3_mk_string_from_code(c.ctx_ref(), c.as_ast()), c.ctx)
11521def Re(s, ctx=None):
11522 """The regular expression that accepts sequence 's'
11524 >>> s2 = Re(StringVal("ab"))
11525 >>> s3 = Re(Unit(BoolVal(True)))
11527 s = _coerce_seq(s, ctx)
11528 return ReRef(Z3_mk_seq_to_re(s.ctx_ref(), s.as_ast()), s.ctx)
11531# Regular expressions
11533class ReSortRef(SortRef):
11534 """Regular expression sort."""
11537 return _to_sort_ref(Z3_get_re_sort_basis(self.ctx_ref(), self.ast), self.ctx)
11542 return ReSortRef(Z3_mk_re_sort(s.ctx.ref(), s.ast), s.ctx)
11543 if s is None or isinstance(s, Context):
11545 return ReSortRef(Z3_mk_re_sort(ctx.ref(), Z3_mk_string_sort(ctx.ref())), s.ctx)
11546 raise Z3Exception("Regular expression sort constructor expects either a string or a context or no argument")
11549class ReRef(ExprRef):
11550 """Regular expressions."""
11552 def __add__(self, other):
11553 return Union(self, other)
11557 return isinstance(s, ReRef)
11561 """Create regular expression membership test
11562 >>> re = Union(Re("a"),Re("b"))
11563 >>> print (simplify(InRe("a", re)))
11565 >>> print (simplify(InRe("b", re)))
11567 >>> print (simplify(InRe("c", re)))
11570 s = _coerce_seq(s, re.ctx)
11571 return BoolRef(Z3_mk_seq_in_re(s.ctx_ref(), s.as_ast(), re.as_ast()), s.ctx)
11575 """Create union of regular expressions.
11576 >>> re = Union(Re("a"), Re("b"), Re("c"))
11577 >>> print (simplify(InRe("d", re)))
11580 args = _get_args(args)
11583 _z3_assert(sz > 0, "At least one argument expected.")
11584 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
11589 for i in range(sz):
11590 v[i] = args[i].as_ast()
11591 return ReRef(Z3_mk_re_union(ctx.ref(), sz, v), ctx)
11594def Intersect(*args):
11595 """Create intersection of regular expressions.
11596 >>> re = Intersect(Re("a"), Re("b"), Re("c"))
11598 args = _get_args(args)
11601 _z3_assert(sz > 0, "At least one argument expected.")
11602 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
11607 for i in range(sz):
11608 v[i] = args[i].as_ast()
11609 return ReRef(Z3_mk_re_intersect(ctx.ref(), sz, v), ctx)
11613 """Create the regular expression accepting one or more repetitions of argument.
11614 >>> re = Plus(Re("a"))
11615 >>> print(simplify(InRe("aa", re)))
11617 >>> print(simplify(InRe("ab", re)))
11619 >>> print(simplify(InRe("", re)))
11623 _z3_assert(is_expr(re), "expression expected")
11624 return ReRef(Z3_mk_re_plus(re.ctx_ref(), re.as_ast()), re.ctx)
11628 """Create the regular expression that optionally accepts the argument.
11629 >>> re = Option(Re("a"))
11630 >>> print(simplify(InRe("a", re)))
11632 >>> print(simplify(InRe("", re)))
11634 >>> print(simplify(InRe("aa", re)))
11638 _z3_assert(is_expr(re), "expression expected")
11639 return ReRef(Z3_mk_re_option(re.ctx_ref(), re.as_ast()), re.ctx)
11643 """Create the complement regular expression."""
11644 return ReRef(Z3_mk_re_complement(re.ctx_ref(), re.as_ast()), re.ctx)
11648 """Create the regular expression accepting zero or more repetitions of argument.
11649 >>> re = Star(Re("a"))
11650 >>> print(simplify(InRe("aa", re)))
11652 >>> print(simplify(InRe("ab", re)))
11654 >>> print(simplify(InRe("", re)))
11658 _z3_assert(is_expr(re), "expression expected")
11659 return ReRef(Z3_mk_re_star(re.ctx_ref(), re.as_ast()), re.ctx)
11662def Loop(re, lo, hi=0):
11663 """Create the regular expression accepting between a lower and upper bound repetitions
11664 >>> re = Loop(Re("a"), 1, 3)
11665 >>> print(simplify(InRe("aa", re)))
11667 >>> print(simplify(InRe("aaaa", re)))
11669 >>> print(simplify(InRe("", re)))
11673 _z3_assert(is_expr(re), "expression expected")
11674 return ReRef(Z3_mk_re_loop(re.ctx_ref(), re.as_ast(), lo, hi), re.ctx)
11677def Range(lo, hi, ctx=None):
11678 """Create the range regular expression over two sequences of length 1
11679 >>> range = Range("a","z")
11680 >>> print(simplify(InRe("b", range)))
11682 >>> print(simplify(InRe("bb", range)))
11685 lo = _coerce_seq(lo, ctx)
11686 hi = _coerce_seq(hi, ctx)
11688 _z3_assert(is_expr(lo), "expression expected")
11689 _z3_assert(is_expr(hi), "expression expected")
11690 return ReRef(Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx)
11692def Diff(a, b, ctx=None):
11693 """Create the difference regular expression
11696 _z3_assert(is_expr(a), "expression expected")
11697 _z3_assert(is_expr(b), "expression expected")
11698 return ReRef(Z3_mk_re_diff(a.ctx_ref(), a.ast, b.ast), a.ctx)
11700def AllChar(regex_sort, ctx=None):
11701 """Create a regular expression that accepts all single character strings
11703 return ReRef(Z3_mk_re_allchar(regex_sort.ctx_ref(), regex_sort.ast), regex_sort.ctx)
11708def PartialOrder(a, index):
11709 return FuncDeclRef(Z3_mk_partial_order(a.ctx_ref(), a.ast, index), a.ctx)
11712def LinearOrder(a, index):
11713 return FuncDeclRef(Z3_mk_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11716def TreeOrder(a, index):
11717 return FuncDeclRef(Z3_mk_tree_order(a.ctx_ref(), a.ast, index), a.ctx)
11720def PiecewiseLinearOrder(a, index):
11721 return FuncDeclRef(Z3_mk_piecewise_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11724def TransitiveClosure(f):
11725 """Given a binary relation R, such that the two arguments have the same sort
11726 create the transitive closure relation R+.
11727 The transitive closure R+ is a new relation.
11729 return FuncDeclRef(Z3_mk_transitive_closure(f.ctx_ref(), f.ast), f.ctx)
11733 super(ctypes.c_void_p, ast).__init__(ptr)
11736def to_ContextObj(ptr,):
11737 ctx = ContextObj(ptr)
11738 super(ctypes.c_void_p, ctx).__init__(ptr)
11741def to_AstVectorObj(ptr,):
11742 v = AstVectorObj(ptr)
11743 super(ctypes.c_void_p, v).__init__(ptr)
11746# NB. my-hacky-class only works for a single instance of OnClause
11747# it should be replaced with a proper correlation between OnClause
11748# and object references that can be passed over the FFI.
11749# for UserPropagator we use a global dictionary, which isn't great code.
11751_my_hacky_class = None
11752def on_clause_eh(ctx, p, n, dep, clause):
11753 onc = _my_hacky_class
11754 p = _to_expr_ref(to_Ast(p), onc.ctx)
11755 clause = AstVector(to_AstVectorObj(clause), onc.ctx)
11756 deps = [dep[i] for i in range(n)]
11757 onc.on_clause(p, deps, clause)
11759_on_clause_eh = Z3_on_clause_eh(on_clause_eh)
11762 def __init__(self, s, on_clause):
11765 self.on_clause = on_clause
11767 global _my_hacky_class
11768 _my_hacky_class = self
11769 Z3_solver_register_on_clause(self.ctx.ref(), self.s.solver, self.idx, _on_clause_eh)
11773 def __init__(self):
11777 def set_threaded(self):
11778 if self.lock is None:
11780 self.lock = threading.Lock()
11782 def get(self, ctx):
11785 r = self.bases[ctx]
11787 r = self.bases[ctx]
11790 def set(self, ctx, r):
11793 self.bases[ctx] = r
11795 self.bases[ctx] = r
11797 def insert(self, r):
11800 id = len(self.bases) + 3
11803 id = len(self.bases) + 3
11808_prop_closures = None
11811def ensure_prop_closures():
11812 global _prop_closures
11813 if _prop_closures is None:
11814 _prop_closures = PropClosures()
11817def user_prop_push(ctx, cb):
11818 prop = _prop_closures.get(ctx)
11823def user_prop_pop(ctx, cb, num_scopes):
11824 prop = _prop_closures.get(ctx)
11826 prop.pop(num_scopes)
11829def user_prop_fresh(ctx, _new_ctx):
11830 _prop_closures.set_threaded()
11831 prop = _prop_closures.get(ctx)
11833 Z3_del_context(nctx.ctx)
11834 new_ctx = to_ContextObj(_new_ctx)
11836 nctx.eh = Z3_set_error_handler(new_ctx, z3_error_handler)
11838 new_prop = prop.fresh(nctx)
11839 _prop_closures.set(new_prop.id, new_prop)
11843def user_prop_fixed(ctx, cb, id, value):
11844 prop = _prop_closures.get(ctx)
11847 id = _to_expr_ref(to_Ast(id), prop.ctx())
11848 value = _to_expr_ref(to_Ast(value), prop.ctx())
11849 prop.fixed(id, value)
11852def user_prop_created(ctx, cb, id):
11853 prop = _prop_closures.get(ctx)
11856 id = _to_expr_ref(to_Ast(id), prop.ctx())
11861def user_prop_final(ctx, cb):
11862 prop = _prop_closures.get(ctx)
11868def user_prop_eq(ctx, cb, x, y):
11869 prop = _prop_closures.get(ctx)
11872 x = _to_expr_ref(to_Ast(x), prop.ctx())
11873 y = _to_expr_ref(to_Ast(y), prop.ctx())
11877def user_prop_diseq(ctx, cb, x, y):
11878 prop = _prop_closures.get(ctx)
11881 x = _to_expr_ref(to_Ast(x), prop.ctx())
11882 y = _to_expr_ref(to_Ast(y), prop.ctx())
11886def user_prop_decide(ctx, cb, t_ref, idx, phase):
11887 prop = _prop_closures.get(ctx)
11890 t = _to_expr_ref(to_Ast(t_ref), prop.ctx())
11891 prop.decide(t, idx, phase)
11894def user_prop_binding(ctx, cb, q_ref, inst_ref):
11895 prop = _prop_closures.get(ctx)
11898 q = _to_expr_ref(to_Ast(q_ref), prop.ctx())
11899 inst = _to_expr_ref(to_Ast(inst_ref), prop.ctx())
11900 r = prop.binding(q, inst)
11905_user_prop_push = Z3_push_eh(user_prop_push)
11906_user_prop_pop = Z3_pop_eh(user_prop_pop)
11907_user_prop_fresh = Z3_fresh_eh(user_prop_fresh)
11908_user_prop_fixed = Z3_fixed_eh(user_prop_fixed)
11909_user_prop_created = Z3_created_eh(user_prop_created)
11910_user_prop_final = Z3_final_eh(user_prop_final)
11911_user_prop_eq = Z3_eq_eh(user_prop_eq)
11912_user_prop_diseq = Z3_eq_eh(user_prop_diseq)
11913_user_prop_decide = Z3_decide_eh(user_prop_decide)
11914_user_prop_binding = Z3_on_binding_eh(user_prop_binding)
11917def PropagateFunction(name, *sig):
11918 """Create a function that gets tracked by user propagator.
11919 Every term headed by this function symbol is tracked.
11920 If a term is fixed and the fixed callback is registered a
11921 callback is invoked that the term headed by this function is fixed.
11923 sig = _get_args(sig)
11925 _z3_assert(len(sig) > 0, "At least two arguments expected")
11926 arity = len(sig) - 1
11929 _z3_assert(is_sort(rng), "Z3 sort expected")
11930 dom = (Sort * arity)()
11931 for i in range(arity):
11933 _z3_assert(is_sort(sig[i]), "Z3 sort expected")
11934 dom[i] = sig[i].ast
11936 return FuncDeclRef(Z3_solver_propagate_declare(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
11940class UserPropagateBase:
11943 # Either solver is set or ctx is set.
11944 # Propagators that are created through callbacks
11945 # to "fresh" inherit the context of that is supplied
11946 # as argument to the callback.
11947 # This context should not be deleted. It is owned by the solver.
11949 def __init__(self, s, ctx=None):
11950 assert s is None or ctx is None
11951 ensure_prop_closures()
11954 self.fresh_ctx = None
11956 self.id = _prop_closures.insert(self)
11962 self.created = None
11963 self.binding = None
11965 self.fresh_ctx = ctx
11967 Z3_solver_propagate_init(self.ctx_ref(),
11969 ctypes.c_void_p(self.id),
11976 self._ctx.ctx = None
11980 return self.fresh_ctx
11982 return self.solver.ctx
11985 return self.ctx().ref()
11987 def add_fixed(self, fixed):
11988 assert not self.fixed
11989 assert not self._ctx
11991 Z3_solver_propagate_fixed(self.ctx_ref(), self.solver.solver, _user_prop_fixed)
11994 def add_created(self, created):
11995 assert not self.created
11996 assert not self._ctx
11998 Z3_solver_propagate_created(self.ctx_ref(), self.solver.solver, _user_prop_created)
11999 self.created = created
12001 def add_final(self, final):
12002 assert not self.final
12003 assert not self._ctx
12005 Z3_solver_propagate_final(self.ctx_ref(), self.solver.solver, _user_prop_final)
12008 def add_eq(self, eq):
12010 assert not self._ctx
12012 Z3_solver_propagate_eq(self.ctx_ref(), self.solver.solver, _user_prop_eq)
12015 def add_diseq(self, diseq):
12016 assert not self.diseq
12017 assert not self._ctx
12019 Z3_solver_propagate_diseq(self.ctx_ref(), self.solver.solver, _user_prop_diseq)
12022 def add_decide(self, decide):
12023 assert not self.decide
12024 assert not self._ctx
12026 Z3_solver_propagate_decide(self.ctx_ref(), self.solver.solver, _user_prop_decide)
12027 self.decide = decide
12029 def add_on_binding(self, binding):
12030 assert not self.binding
12031 assert not self._ctx
12033 Z3_solver_propagate_on_binding(self.ctx_ref(), self.solver.solver, _user_prop_binding)
12034 self.binding = binding
12037 raise Z3Exception("push needs to be overwritten")
12039 def pop(self, num_scopes):
12040 raise Z3Exception("pop needs to be overwritten")
12042 def fresh(self, new_ctx):
12043 raise Z3Exception("fresh needs to be overwritten")
12046 assert not self._ctx
12048 Z3_solver_propagate_register(self.ctx_ref(), self.solver.solver, e.ast)
12050 Z3_solver_propagate_register_cb(self.ctx_ref(), ctypes.c_void_p(self.cb), e.ast)
12053 # Tell the solver to perform the next split on a given term
12054 # If the term is a bit-vector the index idx specifies the index of the Boolean variable being
12055 # split on. A phase of true = 1/false = -1/undef = 0 = let solver decide is the last argument.
12057 def next_split(self, t, idx, phase):
12058 return Z3_solver_next_split(self.ctx_ref(), ctypes.c_void_p(self.cb), t.ast, idx, phase)
12061 # Propagation can only be invoked as during a fixed or final callback.
12063 def propagate(self, e, ids, eqs=[]):
12064 _ids, num_fixed = _to_ast_array(ids)
12066 _lhs, _num_lhs = _to_ast_array([x for x, y in eqs])
12067 _rhs, _num_rhs = _to_ast_array([y for x, y in eqs])
12068 return Z3_solver_propagate_consequence(e.ctx.ref(), ctypes.c_void_p(
12069 self.cb), num_fixed, _ids, num_eqs, _lhs, _rhs, e.ast)
12071 def conflict(self, deps = [], eqs = []):
12072 self.propagate(BoolVal(False, self.ctx()), deps, eqs)
approx(self, precision=10)
__rtruediv__(self, other)
__deepcopy__(self, memo={})
__init__(self, m=None, ctx=None)
__deepcopy__(self, memo={})
__init__(self, ast, ctx=None)
__deepcopy__(self, memo={})
translate(self, other_ctx)
__init__(self, v=None, ctx=None)
__rtruediv__(self, other)
__deepcopy__(self, memo={})
set_ast_print_mode(self, mode)
__init__(self, *args, **kws)
__deepcopy__(self, memo={})
__init__(self, name, ctx=None)
declare(self, name, *args)
declare_core(self, name, rec_name, *args)
__deepcopy__(self, memo={})
__init__(self, entry, ctx)
__deepcopy__(self, memo={})
translate(self, other_ctx)
__deepcopy__(self, memo={})
assert_exprs(self, *args)
dimacs(self, include_names=True)
simplify(self, *arguments, **keywords)
convert_model(self, model)
__init__(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None)
__deepcopy__(self, memo={})
eval(self, t, model_completion=False)
project_with_witness(self, vars, fml)
update_value(self, x, value)
evaluate(self, t, model_completion=False)
__deepcopy__(self, memo={})
__init__(self, descr, ctx=None)
get_documentation(self, n)
__deepcopy__(self, memo={})
__init__(self, ctx=None, params=None)
denominator_as_long(self)
Strings, Sequences and Regular expressions.
__init__(self, solver=None, ctx=None, logFile=None)
assert_and_track(self, a, p)
import_model_converter(self, other)
assert_exprs(self, *args)
check(self, *assumptions)
__exit__(self, *exc_info)
__deepcopy__(self, memo={})
__init__(self, stats, ctx)
Z3_ast Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a)
Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL,...
Z3_sort Z3_API Z3_mk_int_sort(Z3_context c)
Create the integer type.
Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const *domain, Z3_sort range)
Create an array type with N arguments.
bool Z3_API Z3_open_log(Z3_string filename)
Log interaction to a file.
Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(Z3_context c, Z3_func_decl d, unsigned idx)
Return the parameter type associated with a declaration.
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.
Z3_decl_kind Z3_API Z3_get_decl_kind(Z3_context c, Z3_func_decl d)
Return declaration kind corresponding to declaration.
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)
Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.
Z3_ast Z3_API Z3_func_interp_get_else(Z3_context c, Z3_func_interp f)
Return the 'else' value of the given function interpretation.
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
void Z3_API Z3_ast_map_inc_ref(Z3_context c, Z3_ast_map m)
Increment the reference counter of the given AST map.
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a)
Return the declaration of a constant or function application.
void Z3_API Z3_del_context(Z3_context c)
Delete the given logical context.
Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.
Z3_ast Z3_API Z3_ast_map_find(Z3_context c, Z3_ast_map m, Z3_ast k)
Return the value associated with the key k.
Z3_string Z3_API Z3_ast_map_to_string(Z3_context c, Z3_ast_map m)
Convert the given map into a string.
Z3_string Z3_API Z3_param_descrs_to_string(Z3_context c, Z3_param_descrs p)
Convert a parameter description set into a string. This function is mainly used for printing the cont...
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...
void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)
Set the given solver using the given parameters.
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.
Z3_params Z3_API Z3_mk_params(Z3_context c)
Create a Z3 (empty) parameter set. Starting at Z3 4.0, parameter sets are used to configure many comp...
unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d)
Return the number of parameters associated with a declaration.
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.
Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.
Z3_param_kind Z3_API Z3_param_descrs_get_kind(Z3_context c, Z3_param_descrs p, Z3_symbol n)
Return the kind associated with the given parameter name n.
void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body)
Define the body of a recursive function.
Z3_ast Z3_API Z3_mk_true(Z3_context c)
Create an AST node representing true.
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.
Z3_func_interp Z3_API Z3_add_func_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast default_value)
Create a fresh func_interp object, add it to a model for a specified function. It has reference count...
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.
unsigned Z3_API Z3_get_arity(Z3_context c, Z3_func_decl d)
Alias for Z3_get_domain_size.
void Z3_API Z3_ast_vector_set(Z3_context c, Z3_ast_vector v, unsigned i, Z3_ast a)
Update position i of the AST vector v with the AST a.
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s)
Convert a statistics into a string.
Z3_sort Z3_API Z3_mk_real_sort(Z3_context c)
Create the real type.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
bool Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value)
Get a global (or module) parameter.
bool Z3_API Z3_goal_inconsistent(Z3_context c, Z3_goal g)
Return true if the given goal contains the formula false.
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.
void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)
Decrement the reference counter of the given solver.
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)
Return the declaration of the i-th function in the given model.
bool Z3_API Z3_ast_map_contains(Z3_context c, Z3_ast_map m, Z3_ast k)
Return true if the map m contains the AST key k.
Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty)
Create a numeral of a given sort.
unsigned Z3_API Z3_func_entry_get_num_args(Z3_context c, Z3_func_entry e)
Return the number of arguments in a Z3_func_entry object.
Z3_symbol Z3_API Z3_get_decl_symbol_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the double value associated with an double parameter.
Z3_symbol Z3_API Z3_get_quantifier_skolem_id(Z3_context c, Z3_ast a)
Obtain skolem id of quantifier.
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].
void Z3_API Z3_interrupt(Z3_context c)
Interrupt the execution of a Z3 procedure. This procedure can be used to interrupt: solvers,...
void Z3_API Z3_goal_assert(Z3_context c, Z3_goal g, Z3_ast a)
Add a new formula a to the given goal. The formula is split according to the following procedure that...
Z3_symbol Z3_API Z3_param_descrs_get_name(Z3_context c, Z3_param_descrs p, unsigned i)
Return the name of the parameter at given index i.
Z3_ast Z3_API Z3_func_entry_get_value(Z3_context c, Z3_func_entry e)
Return the value of this point.
bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a)
Determine if ast is an existential quantifier.
Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s)
Create a free (uninterpreted) type using the given name (symbol).
Z3_ast Z3_API Z3_mk_false(Z3_context c)
Create an AST node representing false.
Z3_ast_vector Z3_API Z3_ast_map_keys(Z3_context c, Z3_ast_map m)
Return the keys stored in the given map.
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_model Z3_API Z3_goal_convert_model(Z3_context c, Z3_goal g, Z3_model m)
Convert a model of the formulas of a goal to a model of an original goal. The model may be null,...
void Z3_API Z3_del_constructor(Z3_context c, Z3_constructor constr)
Reclaim memory allocated to constructor.
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a)
Convert the given AST node into a string.
Z3_context Z3_API Z3_mk_context_rc(Z3_config c)
Create a context using the given configuration. This function is similar to Z3_mk_context....
Z3_string Z3_API Z3_get_full_version(void)
Return a string that fully describes the version of Z3 in use.
void Z3_API Z3_enable_trace(Z3_string tag)
Enable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.
unsigned Z3_API Z3_get_quantifier_num_patterns(Z3_context c, Z3_ast a)
Return number of patterns used in quantifier.
Z3_symbol Z3_API Z3_get_quantifier_bound_name(Z3_context c, Z3_ast a, unsigned i)
Return symbol of the i'th bound variable.
bool Z3_API Z3_stats_is_uint(Z3_context c, Z3_stats s, unsigned idx)
Return true if the given statistical data is a unsigned integer.
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.
void Z3_API Z3_set_ast_print_mode(Z3_context c, Z3_ast_print_mode mode)
Select mode for the format used for pretty-printing AST nodes.
Z3_ast Z3_API Z3_mk_array_default(Z3_context c, Z3_ast array)
Access the array default value. Produces the default range value, for arrays that can be represented ...
unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m)
Return the number of uninterpreted sorts that m assigns an interpretation to.
Z3_ast_vector Z3_API Z3_ast_vector_translate(Z3_context s, Z3_ast_vector v, Z3_context t)
Translate the AST vector v from context s into an AST vector in context t.
void Z3_API Z3_func_entry_inc_ref(Z3_context c, Z3_func_entry e)
Increment the reference counter of the given Z3_func_entry object.
Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty)
Declare and create a fresh constant.
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.
void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)
Create a backtracking point.
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.
Z3_goal Z3_API Z3_goal_translate(Z3_context source, Z3_goal g, Z3_context target)
Copy a goal g from the context source to the context target.
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.
Z3_string Z3_API Z3_ast_vector_to_string(Z3_context c, Z3_ast_vector v)
Convert AST vector into a string.
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.
bool Z3_API Z3_is_numeral_ast(Z3_context c, Z3_ast a)
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).
bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a)
The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3....
Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a constant or function.
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
void Z3_API Z3_params_set_bool(Z3_context c, Z3_params p, Z3_symbol k, bool v)
Add a Boolean parameter k with value v to the parameter set p.
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i)
Array read. The argument a is the array and i is the index of the array that gets read.
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...
unsigned Z3_API Z3_goal_size(Z3_context c, Z3_goal g)
Return the number of formulas in the given goal.
void Z3_API Z3_stats_inc_ref(Z3_context c, Z3_stats s)
Increment the reference counter of the given statistics object.
Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs)
n-ary Array read. The argument a is the array and idxs are the indices of the array that gets read.
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)
Return the coefficients of the defining polynomial.
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m)
Decrement the reference counter of the given model.
Z3_sort Z3_API Z3_mk_datatype_sort(Z3_context c, Z3_symbol name, unsigned num_params, Z3_sort const params[])
create a forward reference to a recursive datatype being declared. The forward reference can be used ...
void Z3_API Z3_func_interp_inc_ref(Z3_context c, Z3_func_interp f)
Increment the reference counter of the given Z3_func_interp object.
void Z3_API Z3_params_set_double(Z3_context c, Z3_params p, Z3_symbol k, double v)
Add a double parameter k with value v to the parameter set p.
Z3_string Z3_API Z3_param_descrs_get_documentation(Z3_context c, Z3_param_descrs p, Z3_symbol s)
Retrieve documentation string corresponding to parameter name s.
Z3_solver Z3_API Z3_mk_solver(Z3_context c)
Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...
Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)
Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.
int Z3_API Z3_get_symbol_int(Z3_context c, Z3_symbol s)
Return the symbol int value.
Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a)
Return the function declaration f associated with a (_ as_array f) node.
Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the left t2 times.
void Z3_API Z3_goal_inc_ref(Z3_context c, Z3_goal g)
Increment the reference counter of the given goal.
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
unsigned Z3_API Z3_get_datatype_sort_num_constructors(Z3_context c, Z3_sort t)
Return number of constructors for datatype.
void Z3_API Z3_params_set_uint(Z3_context c, Z3_params p, Z3_symbol k, unsigned v)
Add a unsigned parameter k with value v to the parameter set p.
Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])
Check whether the assertions in the given solver and optional assumptions are consistent or not.
Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i)
Return a uninterpreted sort that m assigns an interpretation.
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...
Z3_sort Z3_API Z3_get_array_sort_domain_n(Z3_context c, Z3_sort t, unsigned idx)
Return the i'th domain sort of an n-dimensional array.
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.
int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the integer value associated with an integer parameter.
unsigned Z3_API Z3_get_quantifier_num_no_patterns(Z3_context c, Z3_ast a)
Return number of no_patterns used in quantifier.
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(Z3_context c, Z3_sort t, unsigned idx)
Return idx'th constructor.
void Z3_API Z3_ast_vector_resize(Z3_context c, Z3_ast_vector v, unsigned n)
Resize the AST vector v.
Z3_ast Z3_API Z3_mk_quantifier_const_ex(Z3_context c, bool is_forall, unsigned weight, Z3_symbol quantifier_id, Z3_symbol skolem_id, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], unsigned num_no_patterns, Z3_ast const no_patterns[], Z3_ast body)
Create a universal or existential quantifier using a list of constants that will form the set of boun...
Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[])
Create a pattern for quantifier instantiation.
Z3_symbol_kind Z3_API Z3_get_symbol_kind(Z3_context c, Z3_symbol s)
Return Z3_INT_SYMBOL if the symbol was constructed using Z3_mk_int_symbol, and Z3_STRING_SYMBOL if th...
bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a)
Determine if ast is a lambda expression.
unsigned Z3_API Z3_stats_get_uint_value(Z3_context c, Z3_stats s, unsigned idx)
Return the unsigned value of the given statistical data.
Z3_sort Z3_API Z3_get_array_sort_domain(Z3_context c, Z3_sort t)
Return the domain of the given array sort. In the case of a multi-dimensional array,...
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...
Z3_ast Z3_API Z3_func_decl_to_ast(Z3_context c, Z3_func_decl f)
Convert a Z3_func_decl into Z3_ast. This is just type casting.
void Z3_API Z3_add_const_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast a)
Add a constant interpretation.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)
Return which root of the polynomial the algebraic number represents.
void Z3_API Z3_params_dec_ref(Z3_context c, Z3_params p)
Decrement the reference counter of the given parameter set.
Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i)
Return the i-th argument of the given application.
Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m)
Convert the given model into a string.
Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a fresh constant or function.
unsigned Z3_API Z3_ast_map_size(Z3_context c, Z3_ast_map m)
Return the size of the given map.
unsigned Z3_API Z3_param_descrs_size(Z3_context c, Z3_param_descrs p)
Return the number of parameters in the given parameter description set.
Z3_string Z3_API Z3_goal_to_dimacs_string(Z3_context c, Z3_goal g, bool include_names)
Convert a goal into a DIMACS formatted string. The goal must be in CNF. You can convert a goal to CNF...
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(Z3_context c, Z3_ast a, unsigned i)
Return i'th no_pattern.
double Z3_API Z3_stats_get_double_value(Z3_context c, Z3_stats s, unsigned idx)
Return the double value of the given statistical data.
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.
unsigned Z3_API Z3_goal_depth(Z3_context c, Z3_goal g)
Return the depth of the given goal. It tracks how many transformations were applied to it.
Z3_ast Z3_API Z3_update_term(Z3_context c, Z3_ast a, unsigned num_args, Z3_ast const args[])
Update the arguments of term a using the arguments args. The number of arguments num_args should coin...
Z3_string Z3_API Z3_get_symbol_string(Z3_context c, Z3_symbol s)
Return the symbol name.
Z3_ast Z3_API Z3_pattern_to_ast(Z3_context c, Z3_pattern p)
Convert a Z3_pattern into Z3_ast. This is just type casting.
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.
void Z3_API Z3_mk_datatypes(Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])
Create mutually recursive datatypes.
unsigned Z3_API Z3_func_interp_get_arity(Z3_context c, Z3_func_interp f)
Return the arity (number of arguments) of the given function interpretation.
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])
Create a enumeration sort.
unsigned Z3_API Z3_get_bv_sort_size(Z3_context c, Z3_sort t)
Return the size of the given bit-vector sort.
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.
void Z3_API Z3_ast_vector_dec_ref(Z3_context c, Z3_ast_vector v)
Decrement the reference counter of the given AST vector.
void Z3_API Z3_func_interp_dec_ref(Z3_context c, Z3_func_interp f)
Decrement the reference counter of the given Z3_func_interp object.
void Z3_API Z3_params_inc_ref(Z3_context c, Z3_params p)
Increment the reference counter of the given parameter set.
void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h)
Register a Z3 error handler.
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).
Z3_config Z3_API Z3_mk_config(void)
Create a configuration object for the Z3 context object.
void Z3_API Z3_set_param_value(Z3_config c, Z3_string param_id, Z3_string param_value)
Set a configuration parameter.
Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz)
Create a bit-vector type of the given size.
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.
void Z3_API Z3_ast_map_dec_ref(Z3_context c, Z3_ast_map m)
Decrement the reference counter of the given AST map.
Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p)
Convert a parameter set into a string. This function is mainly used for printing the contents of a pa...
Z3_param_descrs Z3_API Z3_get_global_param_descrs(Z3_context c)
Retrieve description of global parameters.
Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)
Return the i-th constant in the given model.
Z3_ast Z3_API Z3_translate(Z3_context source, Z3_ast a, Z3_context target)
Translate/Copy the AST a from context source to context target. AST a must have been created using co...
Z3_sort Z3_API Z3_get_range(Z3_context c, Z3_func_decl d)
Return the range of the given declaration.
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.
Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s)
Return the finite set of distinct values that represent the interpretation for sort s.
void Z3_API Z3_func_entry_dec_ref(Z3_context c, Z3_func_entry e)
Decrement the reference counter of the given Z3_func_entry object.
unsigned Z3_API Z3_stats_size(Z3_context c, Z3_stats s)
Return the number of statistical data in s.
void Z3_API Z3_append_log(Z3_string string)
Append user-defined string to interaction log.
Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a)
Return body of quantifier.
void Z3_API Z3_param_descrs_dec_ref(Z3_context c, Z3_param_descrs p)
Decrement the reference counter of the given parameter description set.
Z3_model Z3_API Z3_mk_model(Z3_context c)
Create a fresh model object. It has reference count 0.
Z3_symbol Z3_API Z3_get_decl_name(Z3_context c, Z3_func_decl d)
Return the constant declaration name as a symbol.
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.
Z3_string Z3_API Z3_stats_get_key(Z3_context c, Z3_stats s, unsigned idx)
Return the key (a string) for a particular statistical data.
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.
Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a)
Return the kind of the given AST.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).
Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst)
translate model from context c to context dst.
void Z3_API Z3_get_version(unsigned *major, unsigned *minor, unsigned *build_number, unsigned *revision_number)
Return Z3 version number information.
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.
void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)
Assert a constraint into the solver.
unsigned Z3_API Z3_ast_vector_size(Z3_context c, Z3_ast_vector v)
Return the size of the given AST vector.
unsigned Z3_API Z3_get_quantifier_weight(Z3_context c, Z3_ast a)
Obtain weight of quantifier.
bool Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast *v)
Evaluate the AST node t in the given model. Return true if succeeded, and store the result in v.
unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)
Return the number of backtracking points.
Z3_sort Z3_API Z3_get_array_sort_range(Z3_context c, Z3_sort t)
Return the range of the given array sort.
void Z3_API Z3_del_constructor_list(Z3_context c, Z3_constructor_list clist)
Reclaim memory allocated for constructor list.
Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty)
Create a variable.
unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a)
Return the number of argument of an application. If t is an constant, then the number of arguments is...
Z3_ast Z3_API Z3_func_entry_get_arg(Z3_context c, Z3_func_entry e, unsigned i)
Return an argument of a Z3_func_entry object.
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.
void Z3_API Z3_ast_vector_inc_ref(Z3_context c, Z3_ast_vector v)
Increment the reference counter of the given AST vector.
unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)
Return the number of function interpretations in the given model.
void Z3_API Z3_dec_ref(Z3_context c, Z3_ast a)
Decrement the reference counter of the given AST. The context c should have been created using Z3_mk_...
Z3_ast_vector Z3_API Z3_mk_ast_vector(Z3_context c)
Return an empty AST vector.
Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.
Z3_goal_prec Z3_API Z3_goal_precision(Z3_context c, Z3_goal g)
Return the "precision" of the given goal. Goals can be transformed using over and under approximation...
void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)
Backtrack n backtracking points.
void Z3_API Z3_ast_map_erase(Z3_context c, Z3_ast_map m, Z3_ast k)
Erase a key from the map.
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.
unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a)
Return index of de-Bruijn bound variable.
Z3_goal Z3_API Z3_mk_goal(Z3_context c, bool models, bool unsat_cores, bool proofs)
Create a goal (aka problem). A goal is essentially a set of formulas, that can be solved and/or trans...
double Z3_API Z3_get_decl_double_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the double value associated with an double parameter.
unsigned Z3_API Z3_get_ast_hash(Z3_context c, Z3_ast a)
Return a hash code for the given AST. The hash code is structural but two different AST objects can m...
Z3_symbol Z3_API Z3_get_sort_name(Z3_context c, Z3_sort d)
Return the sort name as a symbol.
void Z3_API Z3_params_validate(Z3_context c, Z3_params p, Z3_param_descrs d)
Validate the parameter set p against the parameter description set d.
Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(Z3_context c, Z3_sort t, unsigned idx)
Return idx'th recognizer.
void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.
Z3_string Z3_API Z3_get_decl_rational_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the rational value, as a string, associated with a rational parameter.
void Z3_API Z3_ast_vector_push(Z3_context c, Z3_ast_vector v, Z3_ast a)
Add the AST a in the end of the AST vector v. The size of v is increased by one.
bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2)
Compare terms.
bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a)
Determine if an ast is a universal quantifier.
Z3_ast_map Z3_API Z3_mk_ast_map(Z3_context c)
Return an empty mapping from AST to AST.
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.
Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)
Map f on the argument arrays.
Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty)
Declare and create a constant.
Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s)
Create a Z3 symbol using a C string.
void Z3_API Z3_param_descrs_inc_ref(Z3_context c, Z3_param_descrs p)
Increment the reference counter of the given parameter description set.
void Z3_API Z3_stats_dec_ref(Z3_context c, Z3_stats s)
Decrement the reference counter of the given statistics object.
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create array extensionality index given two arrays with the same sort. The meaning is given by the ax...
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_sort_to_ast(Z3_context c, Z3_sort s)
Convert a Z3_sort into Z3_ast. This is just type casting.
Z3_func_entry Z3_API Z3_func_interp_get_entry(Z3_context c, Z3_func_interp f, unsigned i)
Return a "point" of the given function interpretation. It represents the value of f in a particular p...
Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a recursive function.
unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t)
Return a unique identifier for t. The identifier is unique up to structural equality....
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
unsigned Z3_API Z3_get_quantifier_num_bound(Z3_context c, Z3_ast a)
Return number of bound variables of quantifier.
Z3_sort Z3_API Z3_get_decl_sort_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the sort value associated with a sort parameter.
Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])
Create list of constructors.
Z3_ast Z3_API Z3_mk_app(Z3_context c, Z3_func_decl d, unsigned num_args, Z3_ast const args[])
Create a constant or function application.
Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t)
Return the sort kind (e.g., array, tuple, int, bool, etc).
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.
Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)
n-ary Array update.
Z3_sort Z3_API Z3_get_domain(Z3_context c, Z3_func_decl d, unsigned i)
Return the sort of the i-th parameter of the given function declaration.
Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c)
Create the Boolean type.
void Z3_API Z3_params_set_symbol(Z3_context c, Z3_params p, Z3_symbol k, Z3_symbol v)
Add a symbol parameter k with value v to the parameter set p.
Z3_ast Z3_API Z3_ast_vector_get(Z3_context c, Z3_ast_vector v, unsigned i)
Return the AST at position i in the AST vector v.
Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a)
Convert an AST into a FUNC_DECL_AST. This is just type casting.
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.
Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.
Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(Z3_context c, Z3_ast a, unsigned i)
Return i'th pattern.
void Z3_API Z3_goal_dec_ref(Z3_context c, Z3_goal g)
Decrement the reference counter of the given goal.
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].
Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range)
Create an array type.
void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m)
Increment the reference counter of the given model.
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.
Z3_sort Z3_API Z3_mk_type_variable(Z3_context c, Z3_symbol s)
Create a type variable.
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a decimal string of a numeric constant term.
void Z3_API Z3_func_interp_add_entry(Z3_context c, Z3_func_interp fi, Z3_ast_vector args, Z3_ast value)
add a function entry to a function interpretation.
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.
Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a)
Return numeral value, as a binary string of a numeric constant term.
Z3_sort Z3_API Z3_get_quantifier_bound_sort(Z3_context c, Z3_ast a, unsigned i)
Return sort of the i'th bound variable.
void Z3_API Z3_disable_trace(Z3_string tag)
Disable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
Z3_ast Z3_API Z3_goal_formula(Z3_context c, Z3_goal g, unsigned idx)
Return a formula from the given goal.
Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i)
Create a Z3 symbol using an integer.
unsigned Z3_API Z3_func_interp_get_num_entries(Z3_context c, Z3_func_interp f)
Return the number of entries in the given function interpretation.
void Z3_API Z3_ast_map_insert(Z3_context c, Z3_ast_map m, Z3_ast k, Z3_ast v)
Store/Replace a new key, value pair in the given map.
Z3_constructor Z3_API Z3_mk_constructor(Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort const sorts[], unsigned sort_refs[])
Create a constructor.
Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g)
Convert a goal into a string.
bool Z3_API Z3_is_eq_sort(Z3_context c, Z3_sort s1, Z3_sort s2)
compare sorts.
void Z3_API Z3_del_config(Z3_config c)
Delete the given configuration object.
double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a)
Return numeral as a double.
void Z3_API Z3_inc_ref(Z3_context c, Z3_ast a)
Increment the reference counter of the given AST. The context c should have been created using Z3_mk_...
Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1)
Coerce a real to an integer.
Z3_func_interp Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f)
Return the interpretation of the function f in the model m. Return NULL, if the model does not assign...
void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)
Increment the reference counter of the given solver.
Z3_symbol Z3_API Z3_get_quantifier_id(Z3_context c, Z3_ast a)
Obtain id of quantifier.
Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the right t2 times.
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(Z3_context c, Z3_sort t, unsigned idx_c, unsigned idx_a)
Return idx_a'th accessor for the idx_c'th constructor.
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.
void Z3_API Z3_ast_map_reset(Z3_context c, Z3_ast_map m)
Remove all keys from the given map.
void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)
Remove all assertions from the solver.
bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a)
Return true if the given AST is a real algebraic number.
BitVecVal(val, bv, ctx=None)
_coerce_exprs(a, b, ctx=None)
_ctx_from_ast_args(*args)
_to_func_decl_ref(a, ctx)
_valid_accessor(acc)
Datatypes.
BitVec(name, bv, ctx=None)
RecAddDefinition(f, args, body)
DeclareTypeVar(name, ctx=None)
_z3_check_cint_overflow(n, name)
TupleSort(name, sorts, ctx=None)
_coerce_expr_list(alist, ctx=None)
RealVector(prefix, sz, ctx=None)
SortRef _sort(Context ctx, Any a)
ExprRef RealVar(int idx, ctx=None)
bool is_arith_sort(Any s)
BitVecs(names, bv, ctx=None)
_check_same_sort(a, b, ctx=None)
BoolVector(prefix, sz, ctx=None)
FreshConst(sort, prefix="c")
EnumSort(name, values, ctx=None)
simplify(a, *arguments, **keywords)
Utils.
BV2Int(a, is_signed=False)
FreshInt(prefix="x", ctx=None)
_to_func_decl_array(args)
args2params(arguments, keywords, ctx=None)
Cond(p, t1, t2, ctx=None)
RealVarVector(int n, ctx=None)
bool eq(AstRef a, AstRef b)
FreshReal(prefix="b", ctx=None)
_reduce(func, sequence, initial)
ExprRef Var(int idx, SortRef s)
BVAddNoOverflow(a, b, signed)
FreshBool(prefix="b", ctx=None)
_ctx_from_ast_arg_list(args, default_ctx=None)
IntVector(prefix, sz, ctx=None)
DisjointSum(name, sorts, ctx=None)
Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
int _ast_kind(Context ctx, Any a)
DatatypeSort(name, params=None, ctx=None)
BVSubNoUnderflow(a, b, signed)
SortRef DeclareSort(name, ctx=None)
BVMulNoOverflow(a, b, signed)
_mk_quantifier(is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])