9"""Z3 is a high performance theorem prover developed at Microsoft Research.
11Z3 is used in many applications such as: software/hardware verification and testing,
12constraint solving, analysis of hybrid systems, security, biology (in silico analysis),
13and geometrical problems.
16Please send feedback, comments and/or corrections on the Issue tracker for
17https://github.com/Z3prover/z3.git. Your comments are very valuable.
38... x = BitVec('x', 32)
40... # the expression x + y is type incorrect
42... except Z3Exception as ex:
43... print("failed: %s" % ex)
49from .z3consts
import *
50from .z3printer
import *
51from fractions
import Fraction
56if sys.version_info.major >= 3:
57 from typing
import Iterable, Iterator
59from collections.abc
import Callable
75if sys.version_info.major < 3:
77 return isinstance(v, (int, long))
80 return isinstance(v, int)
92 major = ctypes.c_uint(0)
93 minor = ctypes.c_uint(0)
94 build = ctypes.c_uint(0)
95 rev = ctypes.c_uint(0)
97 return "%s.%s.%s" % (major.value, minor.value, build.value)
101 major = ctypes.c_uint(0)
102 minor = ctypes.c_uint(0)
103 build = ctypes.c_uint(0)
104 rev = ctypes.c_uint(0)
106 return (major.value, minor.value, build.value, rev.value)
115 raise Z3Exception(msg)
119 _z3_assert(ctypes.c_int(n).value == n, name +
" is too large")
123 """Log interaction to a file. This function must be invoked immediately after init(). """
128 """Append user-defined string to interaction log. """
133 """Convert an integer or string into a Z3 symbol."""
141 """Convert a Z3 symbol back into a Python object. """
154 if len(args) == 1
and (isinstance(args[0], tuple)
or isinstance(args[0], list)):
156 elif len(args) == 1
and (isinstance(args[0], set)
or isinstance(args[0], AstVector)):
157 return [arg
for arg
in args[0]]
158 elif len(args) == 1
and isinstance(args[0], Iterator):
170 if isinstance(args, (set, AstVector, tuple)):
171 return [arg
for arg
in args]
179 if isinstance(val, bool):
180 return "true" if val
else "false"
191 """A Context manages all other Z3 objects, global configuration options, etc.
193 Z3Py uses a default global context. For most applications this is sufficient.
194 An application may use multiple Z3 contexts. Objects created in one context
195 cannot be used in another one. However, several objects may be "translated" from
196 one context to another. It is not safe to access Z3 objects from multiple threads.
197 The only exception is the method `interrupt()` that can be used to interrupt() a long
199 The initialization method receives global configuration options for the new context.
204 _z3_assert(len(args) % 2 == 0,
"Argument list must have an even number of elements.")
223 if Z3_del_context
is not None and self.
owner:
229 """Return a reference to the actual C pointer to the Z3 context."""
233 """Interrupt a solver performing a satisfiability test, a tactic processing a goal, or simplify functions.
235 This method can be invoked from a thread different from the one executing the
236 interruptible procedure.
241 """Return the global parameter description set."""
250 """Return a reference to the global Z3 context.
253 >>> x.ctx == main_ctx()
258 >>> x2 = Real('x', c)
265 if _main_ctx
is None:
282 """Set Z3 global (or module) parameters.
284 >>> set_param(precision=10)
287 _z3_assert(len(args) % 2 == 0,
"Argument list must have an even number of elements.")
291 if not set_pp_option(k, v):
306 """Reset all global (or module) parameters.
312 """Alias for 'set_param' for backward compatibility.
318 """Return the value of a Z3 global (or module) parameter
320 >>> get_param('nlsat.reorder')
323 ptr = (ctypes.c_char_p * 1)()
325 r = z3core._to_pystr(ptr[0])
327 raise Z3Exception(
"failed to retrieve value for '%s'" % name)
339 """Superclass for all Z3 objects that have support for pretty printing."""
345 in_html = in_html_mode()
348 set_html_mode(in_html)
353 """AST are Direct Acyclic Graphs (DAGs) used to represent sorts, declarations and expressions."""
361 if self.
ctx.ref()
is not None and self.
ast is not None and Z3_dec_ref
is not None:
369 return obj_to_string(self)
372 return obj_to_string(self)
375 return self.
eq(other)
388 elif is_eq(self)
and self.num_args() == 2:
389 return self.arg(0).
eq(self.arg(1))
391 raise Z3Exception(
"Symbolic expressions cannot be cast to concrete Boolean values.")
394 """Return a string representing the AST node in s-expression notation.
397 >>> ((x + 1)*x).sexpr()
403 """Return a pointer to the corresponding C Z3_ast object."""
407 """Return unique identifier for object. It can be used for hash-tables and maps."""
411 """Return a reference to the C context where this AST node is stored."""
412 return self.
ctx.ref()
415 """Return `True` if `self` and `other` are structurally identical.
422 >>> n1 = simplify(n1)
423 >>> n2 = simplify(n2)
432 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
438 >>> # Nodes in different contexts can't be mixed.
439 >>> # However, we can translate nodes from one context to another.
440 >>> x.translate(c2) + y
444 _z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
451 """Return a hashcode for the `self`.
453 >>> n1 = simplify(Int('x') + 1)
454 >>> n2 = simplify(2 + Int('x') - 1)
455 >>> n1.hash() == n2.hash()
461 """Return a Python value that is equivalent to `self`."""
466 """Return `True` if `a` is an AST node.
470 >>> is_ast(IntVal(10))
474 >>> is_ast(BoolSort())
476 >>> is_ast(Function('f', IntSort(), IntSort()))
483 return isinstance(a, AstRef)
486def eq(a : AstRef, b : AstRef) -> bool:
487 """Return `True` if `a` and `b` are structurally identical AST nodes.
497 >>> eq(simplify(x + 1), simplify(1 + x))
531 _args = (FuncDecl * sz)()
533 _args[i] = args[i].as_func_decl()
541 _args[i] = args[i].as_ast()
549 _args[i] = args[i].as_ast()
557 elif k == Z3_FUNC_DECL_AST:
574 """A Sort is essentially a type. Every Z3 expression has a sort. A sort is an AST node."""
583 """Return the Z3 internal kind of a sort.
584 This method can be used to test if `self` is one of the Z3 builtin sorts.
587 >>> b.kind() == Z3_BOOL_SORT
589 >>> b.kind() == Z3_INT_SORT
591 >>> A = ArraySort(IntSort(), IntSort())
592 >>> A.kind() == Z3_ARRAY_SORT
594 >>> A.kind() == Z3_INT_SORT
600 """Return `True` if `self` is a subsort of `other`.
602 >>> IntSort().subsort(RealSort())
608 """Try to cast `val` as an element of sort `self`.
610 This method is used in Z3Py to convert Python objects such as integers,
611 floats, longs and strings into Z3 expressions.
614 >>> RealSort().cast(x)
623 """Return the name (string) of sort `self`.
625 >>> BoolSort().name()
627 >>> ArraySort(IntSort(), IntSort()).name()
633 """Return `True` if `self` and `other` are the same Z3 sort.
636 >>> p.sort() == BoolSort()
638 >>> p.sort() == IntSort()
646 """Return `True` if `self` and `other` are not the same Z3 sort.
649 >>> p.sort() != BoolSort()
651 >>> p.sort() != IntSort()
657 """Create the function space Array(self, other)"""
662 return AstRef.__hash__(self)
666 """Return `True` if `s` is a Z3 sort.
668 >>> is_sort(IntSort())
670 >>> is_sort(Int('x'))
672 >>> is_expr(Int('x'))
675 return isinstance(s, SortRef)
680 _z3_assert(isinstance(s, Sort),
"Z3 Sort expected")
682 if k == Z3_BOOL_SORT:
684 elif k == Z3_INT_SORT
or k == Z3_REAL_SORT:
686 elif k == Z3_BV_SORT:
688 elif k == Z3_ARRAY_SORT:
690 elif k == Z3_DATATYPE_SORT:
692 elif k == Z3_FINITE_DOMAIN_SORT:
694 elif k == Z3_FLOATING_POINT_SORT:
696 elif k == Z3_ROUNDING_MODE_SORT:
698 elif k == Z3_RE_SORT:
700 elif k == Z3_SEQ_SORT:
702 elif k == Z3_CHAR_SORT:
704 elif k == Z3_TYPE_VAR:
709def _sort(ctx : Context, a : Any) -> SortRef:
714 """Create a new uninterpreted sort named `name`.
716 If `ctx=None`, then the new sort is declared in the global Z3Py context.
718 >>> A = DeclareSort('A')
719 >>> a = Const('a', A)
720 >>> b = Const('b', A)
732 """Type variable reference"""
742 """Create a new type variable named `name`.
744 If `ctx=None`, then the new sort is declared in the global Z3Py context.
759 """Function declaration. Every constant and function have an associated declaration.
761 The declaration assigns a name, a sort (i.e., type), and for function
762 the sort (i.e., type) of each of its arguments. Note that, in Z3,
763 a constant is a function with 0 arguments.
776 """Return the name of the function declaration `self`.
778 >>> f = Function('f', IntSort(), IntSort())
781 >>> isinstance(f.name(), str)
787 """Return the number of arguments of a function declaration.
788 If `self` is a constant, then `self.arity()` is 0.
790 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
797 """Return the sort of the argument `i` of a function declaration.
798 This method assumes that `0 <= i < self.arity()`.
800 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
809 """Return the sort of the range of a function declaration.
810 For constants, this is the sort of the constant.
812 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
819 """Return the internal kind of a function declaration.
820 It can be used to identify Z3 built-in functions such as addition, multiplication, etc.
823 >>> d = (x + 1).decl()
824 >>> d.kind() == Z3_OP_ADD
826 >>> d.kind() == Z3_OP_MUL
834 result = [
None for i
in range(n)]
837 if k == Z3_PARAMETER_INT:
839 elif k == Z3_PARAMETER_DOUBLE:
841 elif k == Z3_PARAMETER_RATIONAL:
843 elif k == Z3_PARAMETER_SYMBOL:
845 elif k == Z3_PARAMETER_SORT:
847 elif k == Z3_PARAMETER_AST:
849 elif k == Z3_PARAMETER_FUNC_DECL:
851 elif k == Z3_PARAMETER_INTERNAL:
852 result[i] =
"internal parameter"
853 elif k == Z3_PARAMETER_ZSTRING:
854 result[i] =
"internal string"
860 """Create a Z3 application expression using the function `self`, and the given arguments.
862 The arguments must be Z3 expressions. This method assumes that
863 the sorts of the elements in `args` match the sorts of the
864 domain. Limited coercion is supported. For example, if
865 args[0] is a Python integer, and the function expects a Z3
866 integer, then the argument is automatically converted into a
869 >>> f = Function('f', IntSort(), RealSort(), BoolSort())
879 _args = (Ast * num)()
884 tmp = self.
domain(i).cast(args[i])
886 _args[i] = tmp.as_ast()
891 """Return `True` if `a` is a Z3 function declaration.
893 >>> f = Function('f', IntSort(), IntSort())
900 return isinstance(a, FuncDeclRef)
904 """Create a new Z3 uninterpreted function with the given sorts.
906 >>> f = Function('f', IntSort(), IntSort())
912 _z3_assert(len(sig) > 0,
"At least two arguments expected")
917 dom = (Sort * arity)()
918 for i
in range(arity):
927 """Create a new fresh Z3 uninterpreted function with the given sorts.
931 _z3_assert(len(sig) > 0,
"At least two arguments expected")
936 dom = (z3.Sort * arity)()
937 for i
in range(arity):
950 """Create a new Z3 recursive with the given sorts."""
953 _z3_assert(len(sig) > 0,
"At least two arguments expected")
958 dom = (Sort * arity)()
959 for i
in range(arity):
968 """Set the body of a recursive function.
969 Recursive definitions can be simplified if they are applied to ground
972 >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
973 >>> n = Int('n', ctx)
974 >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
977 >>> s = Solver(ctx=ctx)
978 >>> s.add(fac(n) < 3)
981 >>> s.model().eval(fac(5))
991 _args[i] = args[i].ast
1002 """Constraints, formulas and terms are expressions in Z3.
1004 Expressions are ASTs. Every expression has a sort.
1005 There are three main kinds of expressions:
1006 function applications, quantifiers and bounded variables.
1007 A constant is a function application with 0 arguments.
1008 For quantifier free problems, all expressions are
1009 function applications.
1019 """Return the sort of expression `self`.
1031 """Shorthand for `self.sort().kind()`.
1033 >>> a = Array('a', IntSort(), IntSort())
1034 >>> a.sort_kind() == Z3_ARRAY_SORT
1036 >>> a.sort_kind() == Z3_INT_SORT
1042 """Return a Z3 expression that represents the constraint `self == other`.
1044 If `other` is `None`, then this method simply returns `False`.
1060 return AstRef.__hash__(self)
1063 """Return a Z3 expression that represents the constraint `self != other`.
1065 If `other` is `None`, then this method simply returns `True`.
1084 """Return the Z3 function declaration associated with a Z3 application.
1086 >>> f = Function('f', IntSort(), IntSort())
1099 """Return the Z3 internal kind of a function application."""
1106 """Return the number of arguments of a Z3 application.
1110 >>> (a + b).num_args()
1112 >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
1122 """Return argument `idx` of the application `self`.
1124 This method assumes that `self` is a function application with at least `idx+1` arguments.
1128 >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
1143 """Return a list containing the children of the given expression
1147 >>> f = Function('f', IntSort(), IntSort(), IntSort(), IntSort())
1153 return [self.
arg(i)
for i
in range(self.
num_args())]
1167 """inverse function to the serialize method on ExprRef.
1168 It is made available to make it easier for users to serialize expressions back and forth between
1169 strings. Solvers can be serialized using the 'sexpr()' method.
1173 if len(s.assertions()) != 1:
1174 raise Z3Exception(
"single assertion expected")
1175 fml = s.assertions()[0]
1176 if fml.num_args() != 1:
1177 raise Z3Exception(
"dummy function 'F' expected")
1181 if isinstance(a, Pattern):
1185 if k == Z3_QUANTIFIER_AST:
1188 if sk == Z3_BOOL_SORT:
1190 if sk == Z3_INT_SORT:
1191 if k == Z3_NUMERAL_AST:
1194 if sk == Z3_REAL_SORT:
1195 if k == Z3_NUMERAL_AST:
1200 if sk == Z3_BV_SORT:
1201 if k == Z3_NUMERAL_AST:
1205 if sk == Z3_ARRAY_SORT:
1207 if sk == Z3_DATATYPE_SORT:
1209 if sk == Z3_FLOATING_POINT_SORT:
1213 return FPRef(a, ctx)
1214 if sk == Z3_FINITE_DOMAIN_SORT:
1215 if k == Z3_NUMERAL_AST:
1219 if sk == Z3_ROUNDING_MODE_SORT:
1221 if sk == Z3_SEQ_SORT:
1223 if sk == Z3_CHAR_SORT:
1225 if sk == Z3_RE_SORT:
1226 return ReRef(a, ctx)
1243 _z3_assert(s1.ctx == s.ctx,
"context mismatch")
1249 if not isinstance(a, ExprRef):
1251 if not isinstance(b, ExprRef):
1265 if isinstance(a, str)
and isinstance(b, SeqRef):
1267 if isinstance(b, str)
and isinstance(a, SeqRef):
1269 if isinstance(a, float)
and isinstance(b, ArithRef):
1271 if isinstance(b, float)
and isinstance(a, ArithRef):
1287 for element
in sequence:
1288 result = func(result, element)
1299 alist = [
_py2expr(a, ctx)
for a
in alist]
1300 s =
_reduce(_coerce_expr_merge, alist,
None)
1301 return [s.cast(a)
for a
in alist]
1305 """Return `True` if `a` is a Z3 expression.
1312 >>> is_expr(IntSort())
1316 >>> is_expr(IntVal(1))
1319 >>> is_expr(ForAll(x, x >= 0))
1321 >>> is_expr(FPVal(1.0))
1324 return isinstance(a, ExprRef)
1328 """Return `True` if `a` is a Z3 function application.
1330 Note that, constants are function applications with 0 arguments.
1337 >>> is_app(IntSort())
1341 >>> is_app(IntVal(1))
1344 >>> is_app(ForAll(x, x >= 0))
1347 if not isinstance(a, ExprRef):
1350 return k == Z3_NUMERAL_AST
or k == Z3_APP_AST
1354 """Return `True` if `a` is Z3 constant/variable expression.
1363 >>> is_const(IntVal(1))
1366 >>> is_const(ForAll(x, x >= 0))
1369 return is_app(a)
and a.num_args() == 0
1373 """Return `True` if `a` is variable.
1375 Z3 uses de-Bruijn indices for representing bound variables in
1383 >>> f = Function('f', IntSort(), IntSort())
1384 >>> # Z3 replaces x with bound variables when ForAll is executed.
1385 >>> q = ForAll(x, f(x) == x)
1391 >>> is_var(b.arg(1))
1398 """Return the de-Bruijn index of the Z3 bounded variable `a`.
1406 >>> f = Function('f', IntSort(), IntSort(), IntSort())
1407 >>> # Z3 replaces x and y with bound variables when ForAll is executed.
1408 >>> q = ForAll([x, y], f(x, y) == x + y)
1410 f(Var(1), Var(0)) == Var(1) + Var(0)
1414 >>> v1 = b.arg(0).arg(0)
1415 >>> v2 = b.arg(0).arg(1)
1420 >>> get_var_index(v1)
1422 >>> get_var_index(v2)
1431 """Return `True` if `a` is an application of the given kind `k`.
1435 >>> is_app_of(n, Z3_OP_ADD)
1437 >>> is_app_of(n, Z3_OP_MUL)
1440 return is_app(a)
and a.kind() == k
1443def If(a, b, c, ctx=None):
1444 """Create a Z3 if-then-else expression.
1448 >>> max = If(x > y, x, y)
1454 if isinstance(a, Probe)
or isinstance(b, Tactic)
or isinstance(c, Tactic):
1455 return Cond(a, b, c, ctx)
1462 _z3_assert(a.ctx == b.ctx,
"Context mismatch")
1467 """Create a Z3 distinct expression.
1474 >>> Distinct(x, y, z)
1476 >>> simplify(Distinct(x, y, z))
1478 >>> simplify(Distinct(x, y, z), blast_distinct=True)
1479 And(Not(x == y), Not(x == z), Not(y == z))
1484 _z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression")
1493 _z3_assert(a.ctx == b.ctx,
"Context mismatch")
1494 args[0] = a.as_ast()
1495 args[1] = b.as_ast()
1496 return f(a.ctx.ref(), 2, args)
1500 """Create a constant of the given sort.
1502 >>> Const('x', IntSort())
1506 _z3_assert(isinstance(sort, SortRef),
"Z3 sort expected")
1512 """Create several constants of the given sort.
1514 `names` is a string containing the names of all constants to be created.
1515 Blank spaces separate the names of different constants.
1517 >>> x, y, z = Consts('x y z', IntSort())
1521 if isinstance(names, str):
1522 names = names.split(
" ")
1523 return [
Const(name, sort)
for name
in names]
1527 """Create a fresh constant of a specified sort"""
1534def Var(idx : int, s : SortRef) -> ExprRef:
1535 """Create a Z3 free variable. Free variables are used to create quantified formulas.
1536 A free variable with index n is bound when it occurs within the scope of n+1 quantified
1539 >>> Var(0, IntSort())
1541 >>> eq(Var(0, IntSort()), Var(0, BoolSort()))
1551 Create a real free variable. Free variables are used to create quantified formulas.
1552 They are also used to create polynomials.
1561 Create a list of Real free variables.
1562 The variables have ids: 0, 1, ..., n-1
1564 >>> x0, x1, x2, x3 = RealVarVector(4)
1568 return [
RealVar(i, ctx)
for i
in range(n)]
1581 """Try to cast `val` as a Boolean.
1583 >>> x = BoolSort().cast(True)
1593 if isinstance(val, bool):
1597 msg =
"True, False or Z3 Boolean expression expected. Received %s of type %s"
1599 if not self.
eq(val.sort()):
1600 _z3_assert(self.
eq(val.sort()),
"Value cannot be converted into a Z3 Boolean value")
1604 return isinstance(other, ArithSortRef)
1614 """All Boolean expressions are instances of this class."""
1620 if isinstance(other, BoolRef):
1621 other =
If(other, 1, 0)
1622 return If(self, 1, 0) + other
1631 """Create the Z3 expression `self * other`.
1633 if isinstance(other, int)
and other == 1:
1634 return If(self, 1, 0)
1635 if isinstance(other, int)
and other == 0:
1637 if isinstance(other, BoolRef):
1638 other =
If(other, 1, 0)
1639 return If(self, other, 0)
1642 return And(self, other)
1645 return Or(self, other)
1648 return Xor(self, other)
1664 """Return `True` if `a` is a Z3 Boolean expression.
1670 >>> is_bool(And(p, q))
1678 return isinstance(a, BoolRef)
1682 """Return `True` if `a` is the Z3 true expression.
1687 >>> is_true(simplify(p == p))
1692 >>> # True is a Python Boolean expression
1700 """Return `True` if `a` is the Z3 false expression.
1707 >>> is_false(BoolVal(False))
1714 """Return `True` if `a` is a Z3 and expression.
1716 >>> p, q = Bools('p q')
1717 >>> is_and(And(p, q))
1719 >>> is_and(Or(p, q))
1726 """Return `True` if `a` is a Z3 or expression.
1728 >>> p, q = Bools('p q')
1731 >>> is_or(And(p, q))
1738 """Return `True` if `a` is a Z3 implication expression.
1740 >>> p, q = Bools('p q')
1741 >>> is_implies(Implies(p, q))
1743 >>> is_implies(And(p, q))
1750 """Return `True` if `a` is a Z3 not expression.
1762 """Return `True` if `a` is a Z3 equality expression.
1764 >>> x, y = Ints('x y')
1772 """Return `True` if `a` is a Z3 distinct expression.
1774 >>> x, y, z = Ints('x y z')
1775 >>> is_distinct(x == y)
1777 >>> is_distinct(Distinct(x, y, z))
1784 """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.
1788 >>> p = Const('p', BoolSort())
1791 >>> r = Function('r', IntSort(), IntSort(), BoolSort())
1794 >>> is_bool(r(0, 1))
1802 """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.
1806 >>> is_true(BoolVal(True))
1810 >>> is_false(BoolVal(False))
1821 """Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.
1833 """Return a tuple of Boolean constants.
1835 `names` is a single string containing all names separated by blank spaces.
1836 If `ctx=None`, then the global context is used.
1838 >>> p, q, r = Bools('p q r')
1839 >>> And(p, Or(q, r))
1843 if isinstance(names, str):
1844 names = names.split(
" ")
1845 return [
Bool(name, ctx)
for name
in names]
1849 """Return a list of Boolean constants of size `sz`.
1851 The constants are named using the given prefix.
1852 If `ctx=None`, then the global context is used.
1854 >>> P = BoolVector('p', 3)
1858 And(p__0, p__1, p__2)
1860 return [
Bool(
"%s__%s" % (prefix, i))
for i
in range(sz)]
1864 """Return a fresh Boolean constant in the given context using the given prefix.
1866 If `ctx=None`, then the global context is used.
1868 >>> b1 = FreshBool()
1869 >>> b2 = FreshBool()
1878 """Create a Z3 implies expression.
1880 >>> p, q = Bools('p q')
1892 """Create a Z3 Xor expression.
1894 >>> p, q = Bools('p q')
1897 >>> simplify(Xor(p, q))
1908 """Create a Z3 not expression or probe.
1913 >>> simplify(Not(Not(p)))
1934 """Return `True` if one of the elements of the given collection is a Z3 probe."""
1942 """Create a Z3 and-expression or and-probe.
1944 >>> p, q, r = Bools('p q r')
1947 >>> P = BoolVector('p', 5)
1949 And(p__0, p__1, p__2, p__3, p__4)
1953 last_arg = args[len(args) - 1]
1954 if isinstance(last_arg, Context):
1955 ctx = args[len(args) - 1]
1956 args = args[:len(args) - 1]
1957 elif len(args) == 1
and isinstance(args[0], AstVector):
1959 args = [a
for a
in args[0]]
1965 _z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression or probe")
1975 """Create a Z3 or-expression or or-probe.
1977 >>> p, q, r = Bools('p q r')
1980 >>> P = BoolVector('p', 5)
1982 Or(p__0, p__1, p__2, p__3, p__4)
1986 last_arg = args[len(args) - 1]
1987 if isinstance(last_arg, Context):
1988 ctx = args[len(args) - 1]
1989 args = args[:len(args) - 1]
1990 elif len(args) == 1
and isinstance(args[0], AstVector):
1992 args = [a
for a
in args[0]]
1998 _z3_assert(ctx
is not None,
"At least one of the arguments must be a Z3 expression or probe")
2014 """Patterns are hints for quantifier instantiation.
2026 """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.
2028 >>> f = Function('f', IntSort(), IntSort())
2030 >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
2032 ForAll(x, f(x) == 0)
2033 >>> q.num_patterns()
2035 >>> is_pattern(q.pattern(0))
2040 return isinstance(a, PatternRef)
2044 """Create a Z3 multi-pattern using the given expressions `*args`
2046 >>> f = Function('f', IntSort(), IntSort())
2047 >>> g = Function('g', IntSort(), IntSort())
2049 >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
2051 ForAll(x, f(x) != g(x))
2052 >>> q.num_patterns()
2054 >>> is_pattern(q.pattern(0))
2057 MultiPattern(f(Var(0)), g(Var(0)))
2060 _z3_assert(len(args) > 0,
"At least one argument expected")
2081 """Universally and Existentially quantified formulas."""
2090 """Return the Boolean sort or sort of Lambda."""
2096 """Return `True` if `self` is a universal quantifier.
2098 >>> f = Function('f', IntSort(), IntSort())
2100 >>> q = ForAll(x, f(x) == 0)
2103 >>> q = Exists(x, f(x) != 0)
2110 """Return `True` if `self` is an existential quantifier.
2112 >>> f = Function('f', IntSort(), IntSort())
2114 >>> q = ForAll(x, f(x) == 0)
2117 >>> q = Exists(x, f(x) != 0)
2124 """Return `True` if `self` is a lambda expression.
2126 >>> f = Function('f', IntSort(), IntSort())
2128 >>> q = Lambda(x, f(x))
2131 >>> q = Exists(x, f(x) != 0)
2138 """Return the Z3 expression `self[arg]`.
2145 """Return the weight annotation of `self`.
2147 >>> f = Function('f', IntSort(), IntSort())
2149 >>> q = ForAll(x, f(x) == 0)
2152 >>> q = ForAll(x, f(x) == 0, weight=10)
2159 """Return the skolem id of `self`.
2164 """Return the quantifier id of `self`.
2169 """Return the number of patterns (i.e., quantifier instantiation hints) in `self`.
2171 >>> f = Function('f', IntSort(), IntSort())
2172 >>> g = Function('g', IntSort(), IntSort())
2174 >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ])
2175 >>> q.num_patterns()
2181 """Return a pattern (i.e., quantifier instantiation hints) in `self`.
2183 >>> f = Function('f', IntSort(), IntSort())
2184 >>> g = Function('g', IntSort(), IntSort())
2186 >>> q = ForAll(x, f(x) != g(x), patterns = [ f(x), g(x) ])
2187 >>> q.num_patterns()
2199 """Return the number of no-patterns."""
2203 """Return a no-pattern."""
2209 """Return the expression being quantified.
2211 >>> f = Function('f', IntSort(), IntSort())
2213 >>> q = ForAll(x, f(x) == 0)
2220 """Return the number of variables bounded by this quantifier.
2222 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2225 >>> q = ForAll([x, y], f(x, y) >= x)
2232 """Return a string representing a name used when displaying the quantifier.
2234 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2237 >>> q = ForAll([x, y], f(x, y) >= x)
2248 """Return the sort of a bound variable.
2250 >>> f = Function('f', IntSort(), RealSort(), IntSort())
2253 >>> q = ForAll([x, y], f(x, y) >= x)
2264 """Return a list containing a single element self.body()
2266 >>> f = Function('f', IntSort(), IntSort())
2268 >>> q = ForAll(x, f(x) == 0)
2272 return [self.
body()]
2276 """Return `True` if `a` is a Z3 quantifier.
2278 >>> f = Function('f', IntSort(), IntSort())
2280 >>> q = ForAll(x, f(x) == 0)
2281 >>> is_quantifier(q)
2283 >>> is_quantifier(f(x))
2286 return isinstance(a, QuantifierRef)
2289def _mk_quantifier(is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2294 _z3_assert(all([
is_expr(p)
for p
in no_patterns]),
"no patterns are Z3 expressions")
2305 _vs = (Ast * num_vars)()
2306 for i
in range(num_vars):
2308 _vs[i] = vs[i].as_ast()
2310 num_pats = len(patterns)
2311 _pats = (Pattern * num_pats)()
2312 for i
in range(num_pats):
2313 _pats[i] = patterns[i].ast
2320 num_no_pats, _no_pats,
2321 body.as_ast()), ctx)
2324def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2325 """Create a Z3 forall formula.
2327 The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.
2329 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2332 >>> ForAll([x, y], f(x, y) >= x)
2333 ForAll([x, y], f(x, y) >= x)
2334 >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
2335 ForAll([x, y], f(x, y) >= x)
2336 >>> ForAll([x, y], f(x, y) >= x, weight=10)
2337 ForAll([x, y], f(x, y) >= x)
2339 return _mk_quantifier(
True, vs, body, weight, qid, skid, patterns, no_patterns)
2342def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2343 """Create a Z3 exists formula.
2345 The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.
2348 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2351 >>> q = Exists([x, y], f(x, y) >= x, skid="foo")
2353 Exists([x, y], f(x, y) >= x)
2354 >>> is_quantifier(q)
2356 >>> r = Tactic('nnf')(q).as_expr()
2357 >>> is_quantifier(r)
2360 return _mk_quantifier(
False, vs, body, weight, qid, skid, patterns, no_patterns)
2364 """Create a Z3 lambda expression.
2366 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2367 >>> mem0 = Array('mem0', IntSort(), IntSort())
2368 >>> lo, hi, e, i = Ints('lo hi e i')
2369 >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
2371 Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
2377 _vs = (Ast * num_vars)()
2378 for i
in range(num_vars):
2380 _vs[i] = vs[i].as_ast()
2391 """Real and Integer sorts."""
2394 """Return `True` if `self` is of the sort Real.
2399 >>> (x + 1).is_real()
2405 return self.
kind() == Z3_REAL_SORT
2408 """Return `True` if `self` is of the sort Integer.
2413 >>> (x + 1).is_int()
2419 return self.
kind() == Z3_INT_SORT
2425 """Return `True` if `self` is a subsort of `other`."""
2429 """Try to cast `val` as an Integer or Real.
2431 >>> IntSort().cast(10)
2433 >>> is_int(IntSort().cast(10))
2437 >>> RealSort().cast(10)
2439 >>> is_real(RealSort().cast(10))
2448 if val_s.is_int()
and self.
is_real():
2450 if val_s.is_bool()
and self.
is_int():
2451 return If(val, 1, 0)
2452 if val_s.is_bool()
and self.
is_real():
2455 _z3_assert(
False,
"Z3 Integer/Real expression expected")
2462 msg =
"int, long, float, string (numeral), or Z3 Integer/Real expression expected. Got %s"
2467 """Return `True` if s is an arithmetical sort (type).
2469 >>> is_arith_sort(IntSort())
2471 >>> is_arith_sort(RealSort())
2473 >>> is_arith_sort(BoolSort())
2475 >>> n = Int('x') + 1
2476 >>> is_arith_sort(n.sort())
2479 return isinstance(s, ArithSortRef)
2483 """Integer and Real expressions."""
2486 """Return the sort (type) of the arithmetical expression `self`.
2490 >>> (Real('x') + 1).sort()
2496 """Return `True` if `self` is an integer expression.
2501 >>> (x + 1).is_int()
2504 >>> (x + y).is_int()
2510 """Return `True` if `self` is an real expression.
2515 >>> (x + 1).is_real()
2521 """Create the Z3 expression `self + other`.
2534 """Create the Z3 expression `other + self`.
2544 """Create the Z3 expression `self * other`.
2553 if isinstance(other, BoolRef):
2554 return If(other, self, 0)
2559 """Create the Z3 expression `other * self`.
2569 """Create the Z3 expression `self - other`.
2582 """Create the Z3 expression `other - self`.
2592 """Create the Z3 expression `self**other` (** is the power operator).
2599 >>> simplify(IntVal(2)**8)
2606 """Create the Z3 expression `other**self` (** is the power operator).
2613 >>> simplify(2**IntVal(8))
2620 """Create the Z3 expression `other/self`.
2643 """Create the Z3 expression `other/self`."""
2647 """Create the Z3 expression `other/self`.
2664 """Create the Z3 expression `other/self`."""
2668 """Create the Z3 expression `other%self`.
2674 >>> simplify(IntVal(10) % IntVal(3))
2679 _z3_assert(a.is_int(),
"Z3 integer expression expected")
2683 """Create the Z3 expression `other%self`.
2691 _z3_assert(a.is_int(),
"Z3 integer expression expected")
2695 """Return an expression representing `-self`.
2715 """Create the Z3 expression `other <= self`.
2717 >>> x, y = Ints('x y')
2728 """Create the Z3 expression `other < self`.
2730 >>> x, y = Ints('x y')
2741 """Create the Z3 expression `other > self`.
2743 >>> x, y = Ints('x y')
2754 """Create the Z3 expression `other >= self`.
2756 >>> x, y = Ints('x y')
2768 """Return `True` if `a` is an arithmetical expression.
2777 >>> is_arith(IntVal(1))
2785 return isinstance(a, ArithRef)
2789 """Return `True` if `a` is an integer expression.
2796 >>> is_int(IntVal(1))
2808 """Return `True` if `a` is a real expression.
2820 >>> is_real(RealVal(1))
2835 """Return `True` if `a` is an integer value of sort Int.
2837 >>> is_int_value(IntVal(1))
2841 >>> is_int_value(Int('x'))
2843 >>> n = Int('x') + 1
2848 >>> is_int_value(n.arg(1))
2850 >>> is_int_value(RealVal("1/3"))
2852 >>> is_int_value(RealVal(1))
2859 """Return `True` if `a` is rational value of sort Real.
2861 >>> is_rational_value(RealVal(1))
2863 >>> is_rational_value(RealVal("3/5"))
2865 >>> is_rational_value(IntVal(1))
2867 >>> is_rational_value(1)
2869 >>> n = Real('x') + 1
2872 >>> is_rational_value(n.arg(1))
2874 >>> is_rational_value(Real('x'))
2881 """Return `True` if `a` is an algebraic value of sort Real.
2883 >>> is_algebraic_value(RealVal("3/5"))
2885 >>> n = simplify(Sqrt(2))
2888 >>> is_algebraic_value(n)
2895 """Return `True` if `a` is an expression of the form b + c.
2897 >>> x, y = Ints('x y')
2907 """Return `True` if `a` is an expression of the form b * c.
2909 >>> x, y = Ints('x y')
2919 """Return `True` if `a` is an expression of the form b - c.
2921 >>> x, y = Ints('x y')
2931 """Return `True` if `a` is an expression of the form b / c.
2933 >>> x, y = Reals('x y')
2938 >>> x, y = Ints('x y')
2948 """Return `True` if `a` is an expression of the form b div c.
2950 >>> x, y = Ints('x y')
2960 """Return `True` if `a` is an expression of the form b % c.
2962 >>> x, y = Ints('x y')
2972 """Return `True` if `a` is an expression of the form b <= c.
2974 >>> x, y = Ints('x y')
2984 """Return `True` if `a` is an expression of the form b < c.
2986 >>> x, y = Ints('x y')
2996 """Return `True` if `a` is an expression of the form b >= c.
2998 >>> x, y = Ints('x y')
3008 """Return `True` if `a` is an expression of the form b > c.
3010 >>> x, y = Ints('x y')
3020 """Return `True` if `a` is an expression of the form IsInt(b).
3023 >>> is_is_int(IsInt(x))
3032 """Return `True` if `a` is an expression of the form ToReal(b).
3047 """Return `True` if `a` is an expression of the form ToInt(b).
3062 """Integer values."""
3065 """Return a Z3 integer numeral as a Python long (bignum) numeral.
3078 """Return a Z3 integer numeral as a Python string.
3086 """Return a Z3 integer numeral as a Python binary string.
3088 >>> v.as_binary_string()
3098 """Rational values."""
3101 """ Return the numerator of a Z3 rational numeral.
3103 >>> is_rational_value(RealVal("3/5"))
3105 >>> n = RealVal("3/5")
3108 >>> is_rational_value(Q(3,5))
3110 >>> Q(3,5).numerator()
3116 """ Return the denominator of a Z3 rational numeral.
3118 >>> is_rational_value(Q(3,5))
3127 """ Return the numerator as a Python long.
3129 >>> v = RealVal(10000000000)
3134 >>> v.numerator_as_long() + 1 == 10000000001
3140 """ Return the denominator as a Python long.
3142 >>> v = RealVal("1/3")
3145 >>> v.denominator_as_long()
3164 """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
3166 >>> v = RealVal("1/5")
3169 >>> v = RealVal("1/3")
3176 """Return a Z3 rational numeral as a Python string.
3185 """Return a Z3 rational as a Python Fraction object.
3187 >>> v = RealVal("1/5")
3198 """Algebraic irrational values."""
3201 """Return a Z3 rational number that approximates the algebraic number `self`.
3202 The result `r` is such that |r - self| <= 1/10^precision
3204 >>> x = simplify(Sqrt(2))
3206 6838717160008073720548335/4835703278458516698824704
3213 """Return a string representation of the algebraic number `self` in decimal notation
3214 using `prec` decimal places.
3216 >>> x = simplify(Sqrt(2))
3217 >>> x.as_decimal(10)
3219 >>> x.as_decimal(20)
3220 '1.41421356237309504880?'
3232 if isinstance(a, bool):
3236 if isinstance(a, float):
3238 if isinstance(a, str):
3243 _z3_assert(
False,
"Python bool, int, long or float expected")
3247 """Return the integer sort in the given context. If `ctx=None`, then the global context is used.
3251 >>> x = Const('x', IntSort())
3254 >>> x.sort() == IntSort()
3256 >>> x.sort() == BoolSort()
3264 """Return the real sort in the given context. If `ctx=None`, then the global context is used.
3268 >>> x = Const('x', RealSort())
3273 >>> x.sort() == RealSort()
3281 if isinstance(val, float):
3282 return str(int(val))
3283 elif isinstance(val, bool):
3293 """Return a Z3 integer value. If `ctx=None`, then the global context is used.
3305 """Return a Z3 real value.
3307 `val` may be a Python int, long, float or string representing a number in decimal or rational notation.
3308 If `ctx=None`, then the global context is used.
3312 >>> RealVal(1).sort()
3324 """Return a Z3 rational a/b.
3326 If `ctx=None`, then the global context is used.
3330 >>> RatVal(3,5).sort()
3334 _z3_assert(
_is_int(a)
or isinstance(a, str),
"First argument cannot be converted into an integer")
3335 _z3_assert(
_is_int(b)
or isinstance(b, str),
"Second argument cannot be converted into an integer")
3339def Q(a, b, ctx=None):
3340 """Return a Z3 rational a/b.
3342 If `ctx=None`, then the global context is used.
3353 """Return an integer constant named `name`. If `ctx=None`, then the global context is used.
3366 """Return a tuple of Integer constants.
3368 >>> x, y, z = Ints('x y z')
3373 if isinstance(names, str):
3374 names = names.split(
" ")
3375 return [
Int(name, ctx)
for name
in names]
3379 """Return a list of integer constants of size `sz`.
3381 >>> X = IntVector('x', 3)
3388 return [
Int(
"%s__%s" % (prefix, i), ctx)
for i
in range(sz)]
3392 """Return a fresh integer constant in the given context using the given prefix.
3406 """Return a real constant named `name`. If `ctx=None`, then the global context is used.
3419 """Return a tuple of real constants.
3421 >>> x, y, z = Reals('x y z')
3424 >>> Sum(x, y, z).sort()
3428 if isinstance(names, str):
3429 names = names.split(
" ")
3430 return [
Real(name, ctx)
for name
in names]
3434 """Return a list of real constants of size `sz`.
3436 >>> X = RealVector('x', 3)
3445 return [
Real(
"%s__%s" % (prefix, i), ctx)
for i
in range(sz)]
3449 """Return a fresh real constant in the given context using the given prefix.
3463 """ Return the Z3 expression ToReal(a).
3475 if isinstance(a, BoolRef):
3478 _z3_assert(a.is_int(),
"Z3 integer expression expected.")
3483 """ Return the Z3 expression ToInt(a).
3495 _z3_assert(a.is_real(),
"Z3 real expression expected.")
3501 """ Return the Z3 predicate IsInt(a).
3504 >>> IsInt(x + "1/2")
3506 >>> solve(IsInt(x + "1/2"), x > 0, x < 1)
3508 >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
3512 _z3_assert(a.is_real(),
"Z3 real expression expected.")
3518 """ Return a Z3 expression which represents the square root of a.
3531 """ Return a Z3 expression which represents the cubic root of a.
3550 """Bit-vector sort."""
3553 """Return the size (number of bits) of the bit-vector sort `self`.
3555 >>> b = BitVecSort(32)
3565 """Try to cast `val` as a Bit-Vector.
3567 >>> b = BitVecSort(32)
3570 >>> b.cast(10).sexpr()
3583 """Return True if `s` is a Z3 bit-vector sort.
3585 >>> is_bv_sort(BitVecSort(32))
3587 >>> is_bv_sort(IntSort())
3590 return isinstance(s, BitVecSortRef)
3594 """Bit-vector expressions."""
3597 """Return the sort of the bit-vector expression `self`.
3599 >>> x = BitVec('x', 32)
3602 >>> x.sort() == BitVecSort(32)
3608 """Return the number of bits of the bit-vector expression `self`.
3610 >>> x = BitVec('x', 32)
3613 >>> Concat(x, x).size()
3619 """Create the Z3 expression `self + other`.
3621 >>> x = BitVec('x', 32)
3622 >>> y = BitVec('y', 32)
3632 """Create the Z3 expression `other + self`.
3634 >>> x = BitVec('x', 32)
3642 """Create the Z3 expression `self * other`.
3644 >>> x = BitVec('x', 32)
3645 >>> y = BitVec('y', 32)
3655 """Create the Z3 expression `other * self`.
3657 >>> x = BitVec('x', 32)
3665 """Create the Z3 expression `self - other`.
3667 >>> x = BitVec('x', 32)
3668 >>> y = BitVec('y', 32)
3678 """Create the Z3 expression `other - self`.
3680 >>> x = BitVec('x', 32)
3688 """Create the Z3 expression bitwise-or `self | other`.
3690 >>> x = BitVec('x', 32)
3691 >>> y = BitVec('y', 32)
3701 """Create the Z3 expression bitwise-or `other | self`.
3703 >>> x = BitVec('x', 32)
3711 """Create the Z3 expression bitwise-and `self & other`.
3713 >>> x = BitVec('x', 32)
3714 >>> y = BitVec('y', 32)
3724 """Create the Z3 expression bitwise-or `other & self`.
3726 >>> x = BitVec('x', 32)
3734 """Create the Z3 expression bitwise-xor `self ^ other`.
3736 >>> x = BitVec('x', 32)
3737 >>> y = BitVec('y', 32)
3747 """Create the Z3 expression bitwise-xor `other ^ self`.
3749 >>> x = BitVec('x', 32)
3759 >>> x = BitVec('x', 32)
3766 """Return an expression representing `-self`.
3768 >>> x = BitVec('x', 32)
3777 """Create the Z3 expression bitwise-not `~self`.
3779 >>> x = BitVec('x', 32)
3788 """Create the Z3 expression (signed) division `self / other`.
3790 Use the function UDiv() for unsigned division.
3792 >>> x = BitVec('x', 32)
3793 >>> y = BitVec('y', 32)
3800 >>> UDiv(x, y).sexpr()
3807 """Create the Z3 expression (signed) division `self / other`."""
3811 """Create the Z3 expression (signed) division `other / self`.
3813 Use the function UDiv() for unsigned division.
3815 >>> x = BitVec('x', 32)
3818 >>> (10 / x).sexpr()
3819 '(bvsdiv #x0000000a x)'
3820 >>> UDiv(10, x).sexpr()
3821 '(bvudiv #x0000000a x)'
3827 """Create the Z3 expression (signed) division `other / self`."""
3831 """Create the Z3 expression (signed) mod `self % other`.
3833 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3835 >>> x = BitVec('x', 32)
3836 >>> y = BitVec('y', 32)
3843 >>> URem(x, y).sexpr()
3845 >>> SRem(x, y).sexpr()
3852 """Create the Z3 expression (signed) mod `other % self`.
3854 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3856 >>> x = BitVec('x', 32)
3859 >>> (10 % x).sexpr()
3860 '(bvsmod #x0000000a x)'
3861 >>> URem(10, x).sexpr()
3862 '(bvurem #x0000000a x)'
3863 >>> SRem(10, x).sexpr()
3864 '(bvsrem #x0000000a x)'
3870 """Create the Z3 expression (signed) `other <= self`.
3872 Use the function ULE() for unsigned less than or equal to.
3874 >>> x, y = BitVecs('x y', 32)
3877 >>> (x <= y).sexpr()
3879 >>> ULE(x, y).sexpr()
3886 """Create the Z3 expression (signed) `other < self`.
3888 Use the function ULT() for unsigned less than.
3890 >>> x, y = BitVecs('x y', 32)
3895 >>> ULT(x, y).sexpr()
3902 """Create the Z3 expression (signed) `other > self`.
3904 Use the function UGT() for unsigned greater than.
3906 >>> x, y = BitVecs('x y', 32)
3911 >>> UGT(x, y).sexpr()
3918 """Create the Z3 expression (signed) `other >= self`.
3920 Use the function UGE() for unsigned greater than or equal to.
3922 >>> x, y = BitVecs('x y', 32)
3925 >>> (x >= y).sexpr()
3927 >>> UGE(x, y).sexpr()
3934 """Create the Z3 expression (arithmetical) right shift `self >> other`
3936 Use the function LShR() for the right logical shift
3938 >>> x, y = BitVecs('x y', 32)
3941 >>> (x >> y).sexpr()
3943 >>> LShR(x, y).sexpr()
3947 >>> BitVecVal(4, 3).as_signed_long()
3949 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
3951 >>> simplify(BitVecVal(4, 3) >> 1)
3953 >>> simplify(LShR(BitVecVal(4, 3), 1))
3955 >>> simplify(BitVecVal(2, 3) >> 1)
3957 >>> simplify(LShR(BitVecVal(2, 3), 1))
3964 """Create the Z3 expression left shift `self << other`
3966 >>> x, y = BitVecs('x y', 32)
3969 >>> (x << y).sexpr()
3971 >>> simplify(BitVecVal(2, 3) << 1)
3978 """Create the Z3 expression (arithmetical) right shift `other` >> `self`.
3980 Use the function LShR() for the right logical shift
3982 >>> x = BitVec('x', 32)
3985 >>> (10 >> x).sexpr()
3986 '(bvashr #x0000000a x)'
3992 """Create the Z3 expression left shift `other << self`.
3994 Use the function LShR() for the right logical shift
3996 >>> x = BitVec('x', 32)
3999 >>> (10 << x).sexpr()
4000 '(bvshl #x0000000a x)'
4007 """Bit-vector values."""
4010 """Return a Z3 bit-vector numeral as a Python long (bignum) numeral.
4012 >>> v = BitVecVal(0xbadc0de, 32)
4015 >>> print("0x%.8x" % v.as_long())
4021 """Return a Z3 bit-vector numeral as a Python long (bignum) numeral.
4022 The most significant bit is assumed to be the sign.
4024 >>> BitVecVal(4, 3).as_signed_long()
4026 >>> BitVecVal(7, 3).as_signed_long()
4028 >>> BitVecVal(3, 3).as_signed_long()
4030 >>> BitVecVal(2**32 - 1, 32).as_signed_long()
4032 >>> BitVecVal(2**64 - 1, 64).as_signed_long()
4037 if val >= 2**(sz - 1):
4039 if val < -2**(sz - 1):
4050 """Return the Python value of a Z3 bit-vector numeral."""
4056 """Return `True` if `a` is a Z3 bit-vector expression.
4058 >>> b = BitVec('b', 32)
4066 return isinstance(a, BitVecRef)
4070 """Return `True` if `a` is a Z3 bit-vector numeral value.
4072 >>> b = BitVec('b', 32)
4075 >>> b = BitVecVal(10, 32)
4085 """Return the Z3 expression BV2Int(a).
4087 >>> b = BitVec('b', 3)
4088 >>> BV2Int(b).sort()
4093 >>> x > BV2Int(b, is_signed=False)
4095 >>> x > BV2Int(b, is_signed=True)
4096 x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
4097 >>> solve(x > BV2Int(b), b == 1, x < 3)
4101 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4108 """Return the z3 expression Int2BV(a, num_bits).
4109 It is a bit-vector of width num_bits and represents the
4110 modulo of a by 2^num_bits
4117 """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.
4119 >>> Byte = BitVecSort(8)
4120 >>> Word = BitVecSort(16)
4123 >>> x = Const('x', Byte)
4124 >>> eq(x, BitVec('x', 8))
4132 """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.
4134 >>> v = BitVecVal(10, 32)
4137 >>> print("0x%.8x" % v.as_long())
4149 """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
4150 If `ctx=None`, then the global context is used.
4152 >>> x = BitVec('x', 16)
4159 >>> word = BitVecSort(16)
4160 >>> x2 = BitVec('x', word)
4164 if isinstance(bv, BitVecSortRef):
4173 """Return a tuple of bit-vector constants of size bv.
4175 >>> x, y, z = BitVecs('x y z', 16)
4182 >>> Product(x, y, z)
4184 >>> simplify(Product(x, y, z))
4188 if isinstance(names, str):
4189 names = names.split(
" ")
4190 return [
BitVec(name, bv, ctx)
for name
in names]
4194 """Create a Z3 bit-vector concatenation expression.
4196 >>> v = BitVecVal(1, 4)
4197 >>> Concat(v, v+1, v)
4198 Concat(Concat(1, 1 + 1), 1)
4199 >>> simplify(Concat(v, v+1, v))
4201 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
4207 _z3_assert(sz >= 2,
"At least two arguments expected.")
4214 if is_seq(args[0])
or isinstance(args[0], str):
4217 _z3_assert(all([
is_seq(a)
for a
in args]),
"All arguments must be sequence expressions.")
4220 v[i] = args[i].as_ast()
4225 _z3_assert(all([
is_re(a)
for a
in args]),
"All arguments must be regular expressions.")
4228 v[i] = args[i].as_ast()
4232 _z3_assert(all([
is_bv(a)
for a
in args]),
"All arguments must be Z3 bit-vector expressions.")
4234 for i
in range(sz - 1):
4240 """Create a Z3 bit-vector extraction expression or sequence extraction expression.
4242 Extract is overloaded to work with both bit-vectors and sequences:
4244 **Bit-vector extraction**: Extract(high, low, bitvector)
4245 Extracts bits from position `high` down to position `low` (both inclusive).
4246 - high: int - the highest bit position to extract (0-indexed from right)
4247 - low: int - the lowest bit position to extract (0-indexed from right)
4248 - bitvector: BitVecRef - the bit-vector to extract from
4249 Returns a new bit-vector containing bits [high:low]
4251 **Sequence extraction**: Extract(sequence, offset, length)
4252 Extracts a subsequence starting at the given offset with the specified length.
4253 The functions SubString and SubSeq are redirected to this form of Extract.
4254 - sequence: SeqRef or str - the sequence to extract from
4255 - offset: int - the starting position (0-indexed)
4256 - length: int - the number of elements to extract
4257 Returns a new sequence containing the extracted subsequence
4259 >>> # Bit-vector extraction examples
4260 >>> x = BitVec('x', 8)
4261 >>> Extract(6, 2, x) # Extract bits 6 down to 2 (5 bits total)
4263 >>> Extract(6, 2, x).sort() # Result is a 5-bit vector
4265 >>> Extract(7, 0, x) # Extract all 8 bits
4267 >>> Extract(3, 3, x) # Extract single bit at position 3
4270 >>> # Sequence extraction examples
4271 >>> s = StringVal("hello")
4272 >>> Extract(s, 1, 3) # Extract 3 characters starting at position 1
4273 str.substr("hello", 1, 3)
4274 >>> simplify(Extract(StringVal("abcd"), 2, 1)) # Extract 1 character at position 2
4276 >>> simplify(Extract(StringVal("abcd"), 0, 2)) # Extract first 2 characters
4279 if isinstance(high, str):
4286 _z3_assert(low <= high,
"First argument must be greater than or equal to second argument")
4288 "First and second arguments must be non negative integers")
4289 _z3_assert(
is_bv(a),
"Third argument must be a Z3 bit-vector expression")
4295 _z3_assert(
is_bv(a)
or is_bv(b),
"First or second argument must be a Z3 bit-vector expression")
4299 """Create the Z3 expression (unsigned) `other <= self`.
4301 Use the operator <= for signed less than or equal to.
4303 >>> x, y = BitVecs('x y', 32)
4306 >>> (x <= y).sexpr()
4308 >>> ULE(x, y).sexpr()
4317 """Create the Z3 expression (unsigned) `other < self`.
4319 Use the operator < for signed less than.
4321 >>> x, y = BitVecs('x y', 32)
4326 >>> ULT(x, y).sexpr()
4335 """Create the Z3 expression (unsigned) `other >= self`.
4337 Use the operator >= for signed greater than or equal to.
4339 >>> x, y = BitVecs('x y', 32)
4342 >>> (x >= y).sexpr()
4344 >>> UGE(x, y).sexpr()
4353 """Create the Z3 expression (unsigned) `other > self`.
4355 Use the operator > for signed greater than.
4357 >>> x, y = BitVecs('x y', 32)
4362 >>> UGT(x, y).sexpr()
4371 """Create the Z3 expression (unsigned) division `self / other`.
4373 Use the operator / for signed division.
4375 >>> x = BitVec('x', 32)
4376 >>> y = BitVec('y', 32)
4379 >>> UDiv(x, y).sort()
4383 >>> UDiv(x, y).sexpr()
4392 """Create the Z3 expression (unsigned) remainder `self % other`.
4394 Use the operator % for signed modulus, and SRem() for signed remainder.
4396 >>> x = BitVec('x', 32)
4397 >>> y = BitVec('y', 32)
4400 >>> URem(x, y).sort()
4404 >>> URem(x, y).sexpr()
4413 """Create the Z3 expression signed remainder.
4415 Use the operator % for signed modulus, and URem() for unsigned remainder.
4417 >>> x = BitVec('x', 32)
4418 >>> y = BitVec('y', 32)
4421 >>> SRem(x, y).sort()
4425 >>> SRem(x, y).sexpr()
4434 """Create the Z3 expression logical right shift.
4436 Use the operator >> for the arithmetical right shift.
4438 >>> x, y = BitVecs('x y', 32)
4441 >>> (x >> y).sexpr()
4443 >>> LShR(x, y).sexpr()
4447 >>> BitVecVal(4, 3).as_signed_long()
4449 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
4451 >>> simplify(BitVecVal(4, 3) >> 1)
4453 >>> simplify(LShR(BitVecVal(4, 3), 1))
4455 >>> simplify(BitVecVal(2, 3) >> 1)
4457 >>> simplify(LShR(BitVecVal(2, 3), 1))
4466 """Return an expression representing `a` rotated to the left `b` times.
4468 >>> a, b = BitVecs('a b', 16)
4469 >>> RotateLeft(a, b)
4471 >>> simplify(RotateLeft(a, 0))
4473 >>> simplify(RotateLeft(a, 16))
4482 """Return an expression representing `a` rotated to the right `b` times.
4484 >>> a, b = BitVecs('a b', 16)
4485 >>> RotateRight(a, b)
4487 >>> simplify(RotateRight(a, 0))
4489 >>> simplify(RotateRight(a, 16))
4498 """Return a bit-vector expression with `n` extra sign-bits.
4500 >>> x = BitVec('x', 16)
4501 >>> n = SignExt(8, x)
4508 >>> v0 = BitVecVal(2, 2)
4513 >>> v = simplify(SignExt(6, v0))
4518 >>> print("%.x" % v.as_long())
4523 _z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4528 """Return a bit-vector expression with `n` extra zero-bits.
4530 >>> x = BitVec('x', 16)
4531 >>> n = ZeroExt(8, x)
4538 >>> v0 = BitVecVal(2, 2)
4543 >>> v = simplify(ZeroExt(6, v0))
4551 _z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4556 """Return an expression representing `n` copies of `a`.
4558 >>> x = BitVec('x', 8)
4559 >>> n = RepeatBitVec(4, x)
4564 >>> v0 = BitVecVal(10, 4)
4565 >>> print("%.x" % v0.as_long())
4567 >>> v = simplify(RepeatBitVec(4, v0))
4570 >>> print("%.x" % v.as_long())
4575 _z3_assert(
is_bv(a),
"Second argument must be a Z3 bit-vector expression")
4580 """Return the reduction-and expression of `a`."""
4582 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4587 """Return the reduction-or expression of `a`."""
4589 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4594 """A predicate the determines that bit-vector addition does not overflow"""
4601 """A predicate the determines that signed bit-vector addition does not underflow"""
4608 """A predicate the determines that bit-vector subtraction does not overflow"""
4615 """A predicate the determines that bit-vector subtraction does not underflow"""
4622 """A predicate the determines that bit-vector signed division does not overflow"""
4629 """A predicate the determines that bit-vector unary negation does not overflow"""
4631 _z3_assert(
is_bv(a),
"First argument must be a Z3 bit-vector expression")
4636 """A predicate the determines that bit-vector multiplication does not overflow"""
4643 """A predicate the determines that bit-vector signed multiplication does not underflow"""
4659 """Return the domain of the array sort `self`.
4661 >>> A = ArraySort(IntSort(), BoolSort())
4668 """Return the domain of the array sort `self`.
4673 """Return the range of the array sort `self`.
4675 >>> A = ArraySort(IntSort(), BoolSort())
4683 """Array expressions. """
4686 """Return the array sort of the array expression `self`.
4688 >>> a = Array('a', IntSort(), BoolSort())
4695 """Shorthand for `self.sort().domain()`.
4697 >>> a = Array('a', IntSort(), BoolSort())
4704 """Shorthand for self.sort().domain_n(i)`."""
4708 """Shorthand for `self.sort().range()`.
4710 >>> a = Array('a', IntSort(), BoolSort())
4717 """Return the Z3 expression `self[arg]`.
4719 >>> a = Array('a', IntSort(), BoolSort())
4733 if isinstance(arg, tuple):
4734 args = [ar.sort().domain_n(i).cast(arg[i])
for i
in range(len(arg))]
4737 arg = ar.sort().domain().cast(arg)
4746 """Return `True` if `a` is a Z3 array expression.
4748 >>> a = Array('a', IntSort(), IntSort())
4751 >>> is_array(Store(a, 0, 1))
4756 return isinstance(a, ArrayRef)
4760 """Return `True` if `a` is a Z3 constant array.
4762 >>> a = K(IntSort(), 10)
4763 >>> is_const_array(a)
4765 >>> a = Array('a', IntSort(), IntSort())
4766 >>> is_const_array(a)
4773 """Return `True` if `a` is a Z3 constant array.
4775 >>> a = K(IntSort(), 10)
4778 >>> a = Array('a', IntSort(), IntSort())
4786 """Return `True` if `a` is a Z3 map array expression.
4788 >>> f = Function('f', IntSort(), IntSort())
4789 >>> b = Array('b', IntSort(), IntSort())
4802 """Return `True` if `a` is a Z3 default array expression.
4803 >>> d = Default(K(IntSort(), 10))
4807 return is_app_of(a, Z3_OP_ARRAY_DEFAULT)
4811 """Return the function declaration associated with a Z3 map array expression.
4813 >>> f = Function('f', IntSort(), IntSort())
4814 >>> b = Array('b', IntSort(), IntSort())
4816 >>> eq(f, get_map_func(a))
4820 >>> get_map_func(a)(0)
4835 """Return the Z3 array sort with the given domain and range sorts.
4837 >>> A = ArraySort(IntSort(), BoolSort())
4844 >>> AA = ArraySort(IntSort(), A)
4846 Array(Int, Array(Int, Bool))
4850 _z3_assert(len(sig) > 1,
"At least two arguments expected")
4851 arity = len(sig) - 1
4857 _z3_assert(s.ctx == r.ctx,
"Context mismatch")
4861 dom = (Sort * arity)()
4862 for i
in range(arity):
4868 """Return an array constant named `name` with the given domain and range sorts.
4870 >>> a = Array('a', IntSort(), IntSort())
4882 """Return a Z3 store array expression.
4884 >>> a = Array('a', IntSort(), IntSort())
4885 >>> i, v = Ints('i v')
4886 >>> s = Update(a, i, v)
4889 >>> prove(s[i] == v)
4892 >>> prove(Implies(i != j, s[j] == a[j]))
4900 raise Z3Exception(
"array update requires index and value arguments")
4904 i = a.sort().domain().cast(i)
4905 v = a.sort().range().cast(v)
4907 v = a.sort().range().cast(args[-1])
4908 idxs = [a.sort().domain_n(i).cast(args[i])
for i
in range(len(args)-1)]
4914 """ Return a default value for array expression.
4915 >>> b = K(IntSort(), 1)
4916 >>> prove(Default(b) == 1)
4925 """Return a Z3 store array expression.
4927 >>> a = Array('a', IntSort(), IntSort())
4928 >>> i, v = Ints('i v')
4929 >>> s = Store(a, i, v)
4932 >>> prove(s[i] == v)
4935 >>> prove(Implies(i != j, s[j] == a[j]))
4942 """Return a Z3 select array expression.
4944 >>> a = Array('a', IntSort(), IntSort())
4948 >>> eq(Select(a, i), a[i])
4958 """Return a Z3 map array expression.
4960 >>> f = Function('f', IntSort(), IntSort(), IntSort())
4961 >>> a1 = Array('a1', IntSort(), IntSort())
4962 >>> a2 = Array('a2', IntSort(), IntSort())
4963 >>> b = Map(f, a1, a2)
4966 >>> prove(b[0] == f(a1[0], a2[0]))
4971 _z3_assert(len(args) > 0,
"At least one Z3 array expression expected")
4974 _z3_assert(len(args) == f.arity(),
"Number of arguments mismatch")
4981 """Return a Z3 constant array expression.
4983 >>> a = K(IntSort(), 10)
5003 """Return extensionality index for one-dimensional arrays.
5004 >> a, b = Consts('a b', SetSort(IntSort()))
5014 """Return `True` if `a` is a Z3 array select application.
5016 >>> a = Array('a', IntSort(), IntSort())
5027 """Return `True` if `a` is a Z3 array store application.
5029 >>> a = Array('a', IntSort(), IntSort())
5032 >>> is_store(Store(a, 0, 1))
5045 """ Create a set sort over element sort s"""
5050 """Create the empty set
5051 >>> EmptySet(IntSort())
5059 """Create the full set
5060 >>> FullSet(IntSort())
5068 """ Take the union of sets
5069 >>> a = Const('a', SetSort(IntSort()))
5070 >>> b = Const('b', SetSort(IntSort()))
5081 """ Take the union of sets
5082 >>> a = Const('a', SetSort(IntSort()))
5083 >>> b = Const('b', SetSort(IntSort()))
5084 >>> SetIntersect(a, b)
5094 """ Add element e to set s
5095 >>> a = Const('a', SetSort(IntSort()))
5105 """ Remove element e to set s
5106 >>> a = Const('a', SetSort(IntSort()))
5116 """ The complement of set s
5117 >>> a = Const('a', SetSort(IntSort()))
5118 >>> SetComplement(a)
5126 """ The set difference of a and b
5127 >>> a = Const('a', SetSort(IntSort()))
5128 >>> b = Const('b', SetSort(IntSort()))
5129 >>> SetDifference(a, b)
5137 """ Check if e is a member of set s
5138 >>> a = Const('a', SetSort(IntSort()))
5148 """ Check if a is a subset of b
5149 >>> a = Const('a', SetSort(IntSort()))
5150 >>> b = Const('b', SetSort(IntSort()))
5165 """Return `True` if acc is pair of the form (String, Datatype or Sort). """
5166 if not isinstance(acc, tuple):
5170 return isinstance(acc[0], str)
and (isinstance(acc[1], Datatype)
or is_sort(acc[1]))
5174 """Helper class for declaring Z3 datatypes.
5176 >>> List = Datatype('List')
5177 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5178 >>> List.declare('nil')
5179 >>> List = List.create()
5180 >>> # List is now a Z3 declaration
5183 >>> List.cons(10, List.nil)
5185 >>> List.cons(10, List.nil).sort()
5187 >>> cons = List.cons
5191 >>> n = cons(1, cons(0, nil))
5193 cons(1, cons(0, nil))
5194 >>> simplify(cdr(n))
5196 >>> simplify(car(n))
5212 _z3_assert(isinstance(name, str),
"String expected")
5213 _z3_assert(isinstance(rec_name, str),
"String expected")
5216 "Valid list of accessors expected. An accessor is a pair of the form (String, Datatype|Sort)",
5221 """Declare constructor named `name` with the given accessors `args`.
5222 Each accessor is a pair `(name, sort)`, where `name` is a string and `sort` a Z3 sort
5223 or a reference to the datatypes being declared.
5225 In the following example `List.declare('cons', ('car', IntSort()), ('cdr', List))`
5226 declares the constructor named `cons` that builds a new List using an integer and a List.
5227 It also declares the accessors `car` and `cdr`. The accessor `car` extracts the integer
5228 of a `cons` cell, and `cdr` the list of a `cons` cell. After all constructors were declared,
5229 we use the method create() to create the actual datatype in Z3.
5231 >>> List = Datatype('List')
5232 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5233 >>> List.declare('nil')
5234 >>> List = List.create()
5237 _z3_assert(isinstance(name, str),
"String expected")
5238 _z3_assert(name !=
"",
"Constructor name cannot be empty")
5245 """Create a Z3 datatype based on the constructors declared using the method `declare()`.
5247 The function `CreateDatatypes()` must be used to define mutually recursive datatypes.
5249 >>> List = Datatype('List')
5250 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5251 >>> List.declare('nil')
5252 >>> List = List.create()
5255 >>> List.cons(10, List.nil)
5262 """Auxiliary object used to create Z3 datatypes."""
5269 if self.
ctx.ref()
is not None and Z3_del_constructor
is not None:
5274 """Auxiliary object used to create Z3 datatypes."""
5281 if self.
ctx.ref()
is not None and Z3_del_constructor_list
is not None:
5286 """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.
5288 In the following example we define a Tree-List using two mutually recursive datatypes.
5290 >>> TreeList = Datatype('TreeList')
5291 >>> Tree = Datatype('Tree')
5292 >>> # Tree has two constructors: leaf and node
5293 >>> Tree.declare('leaf', ('val', IntSort()))
5294 >>> # a node contains a list of trees
5295 >>> Tree.declare('node', ('children', TreeList))
5296 >>> TreeList.declare('nil')
5297 >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
5298 >>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
5299 >>> Tree.val(Tree.leaf(10))
5301 >>> simplify(Tree.val(Tree.leaf(10)))
5303 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
5305 node(cons(leaf(10), cons(leaf(20), nil)))
5306 >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
5307 >>> simplify(n2 == n1)
5309 >>> simplify(TreeList.car(Tree.children(n2)) == n1)
5314 _z3_assert(len(ds) > 0,
"At least one Datatype must be specified")
5315 _z3_assert(all([isinstance(d, Datatype)
for d
in ds]),
"Arguments must be Datatypes")
5316 _z3_assert(all([d.ctx == ds[0].ctx
for d
in ds]),
"Context mismatch")
5317 _z3_assert(all([d.constructors != []
for d
in ds]),
"Non-empty Datatypes expected")
5320 names = (Symbol * num)()
5321 out = (Sort * num)()
5322 clists = (ConstructorList * num)()
5324 for i
in range(num):
5327 num_cs = len(d.constructors)
5328 cs = (Constructor * num_cs)()
5329 for j
in range(num_cs):
5330 c = d.constructors[j]
5335 fnames = (Symbol * num_fs)()
5336 sorts = (Sort * num_fs)()
5337 refs = (ctypes.c_uint * num_fs)()
5338 for k
in range(num_fs):
5342 if isinstance(ftype, Datatype):
5345 ds.count(ftype) == 1,
5346 "One and only one occurrence of each datatype is expected",
5349 refs[k] = ds.index(ftype)
5353 sorts[k] = ftype.ast
5362 for i
in range(num):
5364 num_cs = dref.num_constructors()
5365 for j
in range(num_cs):
5366 cref = dref.constructor(j)
5367 cref_name = cref.name()
5368 cref_arity = cref.arity()
5369 if cref.arity() == 0:
5371 setattr(dref, cref_name, cref)
5372 rref = dref.recognizer(j)
5373 setattr(dref,
"is_" + cref_name, rref)
5374 for k
in range(cref_arity):
5375 aref = dref.accessor(j, k)
5376 setattr(dref, aref.name(), aref)
5378 return tuple(result)
5382 """Datatype sorts."""
5385 """Return the number of constructors in the given Z3 datatype.
5387 >>> List = Datatype('List')
5388 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5389 >>> List.declare('nil')
5390 >>> List = List.create()
5391 >>> # List is now a Z3 declaration
5392 >>> List.num_constructors()
5398 """Return a constructor of the datatype `self`.
5400 >>> List = Datatype('List')
5401 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5402 >>> List.declare('nil')
5403 >>> List = List.create()
5404 >>> # List is now a Z3 declaration
5405 >>> List.num_constructors()
5407 >>> List.constructor(0)
5409 >>> List.constructor(1)
5417 """In Z3, each constructor has an associated recognizer predicate.
5419 If the constructor is named `name`, then the recognizer `is_name`.
5421 >>> List = Datatype('List')
5422 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5423 >>> List.declare('nil')
5424 >>> List = List.create()
5425 >>> # List is now a Z3 declaration
5426 >>> List.num_constructors()
5428 >>> List.recognizer(0)
5430 >>> List.recognizer(1)
5432 >>> simplify(List.is_nil(List.cons(10, List.nil)))
5434 >>> simplify(List.is_cons(List.cons(10, List.nil)))
5436 >>> l = Const('l', List)
5437 >>> simplify(List.is_cons(l))
5445 """In Z3, each constructor has 0 or more accessor.
5446 The number of accessors is equal to the arity of the constructor.
5448 >>> List = Datatype('List')
5449 >>> List.declare('cons', ('car', IntSort()), ('cdr', List))
5450 >>> List.declare('nil')
5451 >>> List = List.create()
5452 >>> List.num_constructors()
5454 >>> List.constructor(0)
5456 >>> num_accs = List.constructor(0).arity()
5459 >>> List.accessor(0, 0)
5461 >>> List.accessor(0, 1)
5463 >>> List.constructor(1)
5465 >>> num_accs = List.constructor(1).arity()
5479 """Datatype expressions."""
5482 """Return the datatype sort of the datatype expression `self`."""
5486 """Create a reference to a sort that was declared, or will be declared, as a recursive datatype.
5489 name: name of the datatype sort
5490 params: optional list/tuple of sort parameters for parametric datatypes
5491 ctx: Z3 context (optional)
5494 >>> # Non-parametric datatype
5495 >>> TreeRef = DatatypeSort('Tree')
5496 >>> # Parametric datatype with one parameter
5497 >>> ListIntRef = DatatypeSort('List', [IntSort()])
5498 >>> # Parametric datatype with multiple parameters
5499 >>> PairRef = DatatypeSort('Pair', [IntSort(), BoolSort()])
5502 if params
is None or len(params) == 0:
5505 _params = (Sort * len(params))()
5506 for i
in range(len(params)):
5507 _params[i] = params[i].ast
5511 """Create a named tuple sort base on a set of underlying sorts
5513 >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
5516 projects = [(
"project%d" % i, sorts[i])
for i
in range(len(sorts))]
5517 tuple.declare(name, *projects)
5518 tuple = tuple.create()
5519 return tuple, tuple.constructor(0), [tuple.accessor(0, i)
for i
in range(len(sorts))]
5523 """Create a named tagged union sort base on a set of underlying sorts
5525 >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
5528 for i
in range(len(sorts)):
5529 sum.declare(
"inject%d" % i, (
"project%d" % i, sorts[i]))
5531 return sum, [(sum.constructor(i), sum.accessor(i, 0))
for i
in range(len(sorts))]
5535 """Return a new enumeration sort named `name` containing the given values.
5537 The result is a pair (sort, list of constants).
5539 >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
5542 _z3_assert(isinstance(name, str),
"Name must be a string")
5543 _z3_assert(all([isinstance(v, str)
for v
in values]),
"Enumeration sort values must be strings")
5544 _z3_assert(len(values) > 0,
"At least one value expected")
5547 _val_names = (Symbol * num)()
5548 for i
in range(num):
5549 _val_names[i] =
to_symbol(values[i], ctx)
5550 _values = (FuncDecl * num)()
5551 _testers = (FuncDecl * num)()
5555 for i
in range(num):
5557 V = [a()
for a
in V]
5568 """Set of parameters used to configure Solvers, Tactics and Simplifiers in Z3.
5570 Consider using the function `args2params` to create instances of this object.
5585 if self.
ctx.ref()
is not None and Z3_params_dec_ref
is not None:
5589 """Set parameter name with value val."""
5591 _z3_assert(isinstance(name, str),
"parameter name must be a string")
5593 if isinstance(val, bool):
5597 elif isinstance(val, float):
5599 elif isinstance(val, str):
5609 _z3_assert(isinstance(ds, ParamDescrsRef),
"parameter description set expected")
5614 """Convert python arguments into a Z3_params object.
5615 A ':' is added to the keywords, and '_' is replaced with '-'
5617 >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
5618 (params model true relevancy 2 elim_and true)
5621 _z3_assert(len(arguments) % 2 == 0,
"Argument list must have an even number of elements.")
5637 """Set of parameter descriptions for Solvers, Tactics and Simplifiers in Z3.
5641 _z3_assert(isinstance(descr, ParamDescrs),
"parameter description object expected")
5647 return ParamsDescrsRef(self.
descr, self.
ctx)
5650 if self.
ctx.ref()
is not None and Z3_param_descrs_dec_ref
is not None:
5654 """Return the size of in the parameter description `self`.
5659 """Return the size of in the parameter description `self`.
5664 """Return the i-th parameter name in the parameter description `self`.
5669 """Return the kind of the parameter named `n`.
5674 """Return the documentation string of the parameter named `n`.
5695 """Goal is a collection of constraints we want to find a solution or show to be unsatisfiable (infeasible).
5697 Goals are processed using Tactics. A Tactic transforms a goal into a set of subgoals.
5698 A goal has a solution if one of its subgoals has a solution.
5699 A goal is unsatisfiable if all subgoals are unsatisfiable.
5702 def __init__(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None):
5705 "If goal is different from None, then ctx must be also different from None")
5708 if self.
goal is None:
5713 if self.
goal is not None and self.
ctx.ref()
is not None and Z3_goal_dec_ref
is not None:
5717 """Return the depth of the goal `self`.
5718 The depth corresponds to the number of tactics applied to `self`.
5720 >>> x, y = Ints('x y')
5722 >>> g.add(x == 0, y >= x + 1)
5725 >>> r = Then('simplify', 'solve-eqs')(g)
5726 >>> # r has 1 subgoal
5735 """Return `True` if `self` contains the `False` constraints.
5737 >>> x, y = Ints('x y')
5739 >>> g.inconsistent()
5741 >>> g.add(x == 0, x == 1)
5744 >>> g.inconsistent()
5746 >>> g2 = Tactic('propagate-values')(g)[0]
5747 >>> g2.inconsistent()
5753 """Return the precision (under-approximation, over-approximation, or precise) of the goal `self`.
5756 >>> g.prec() == Z3_GOAL_PRECISE
5758 >>> x, y = Ints('x y')
5759 >>> g.add(x == y + 1)
5760 >>> g.prec() == Z3_GOAL_PRECISE
5762 >>> t = With(Tactic('add-bounds'), add_bound_lower=0, add_bound_upper=10)
5765 [x == y + 1, x <= 10, x >= 0, y <= 10, y >= 0]
5766 >>> g2.prec() == Z3_GOAL_PRECISE
5768 >>> g2.prec() == Z3_GOAL_UNDER
5774 """Alias for `prec()`.
5777 >>> g.precision() == Z3_GOAL_PRECISE
5783 """Return the number of constraints in the goal `self`.
5788 >>> x, y = Ints('x y')
5789 >>> g.add(x == 0, y > x)
5796 """Return the number of constraints in the goal `self`.
5801 >>> x, y = Ints('x y')
5802 >>> g.add(x == 0, y > x)
5809 """Return a constraint in the goal `self`.
5812 >>> x, y = Ints('x y')
5813 >>> g.add(x == 0, y > x)
5822 """Return a constraint in the goal `self`.
5825 >>> x, y = Ints('x y')
5826 >>> g.add(x == 0, y > x)
5832 if arg >= len(self):
5834 return self.
get(arg)
5837 """Assert constraints into the goal.
5841 >>> g.assert_exprs(x > 0, x < 2)
5856 >>> g.append(x > 0, x < 2)
5867 >>> g.insert(x > 0, x < 2)
5878 >>> g.add(x > 0, x < 2)
5885 """Retrieve model from a satisfiable goal
5886 >>> a, b = Ints('a b')
5888 >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
5889 >>> t = Then(Tactic('split-clause'), Tactic('solve-eqs'))
5892 [Or(b == 0, b == 1), Not(0 <= b)]
5894 [Or(b == 0, b == 1), Not(1 <= b)]
5895 >>> # Remark: the subgoal r[0] is unsatisfiable
5896 >>> # Creating a solver for solving the second subgoal
5903 >>> # Model s.model() does not assign a value to `a`
5904 >>> # It is a model for subgoal `r[1]`, but not for goal `g`
5905 >>> # The method convert_model creates a model for `g` from a model for `r[1]`.
5906 >>> r[1].convert_model(s.model())
5910 _z3_assert(isinstance(model, ModelRef),
"Z3 Model expected")
5914 return obj_to_string(self)
5917 """Return a textual representation of the s-expression representing the goal."""
5921 """Return a textual representation of the goal in DIMACS format."""
5925 """Copy goal `self` to context `target`.
5933 >>> g2 = g.translate(c2)
5936 >>> g.ctx == main_ctx()
5940 >>> g2.ctx == main_ctx()
5944 _z3_assert(isinstance(target, Context),
"target must be a context")
5954 """Return a new simplified goal.
5956 This method is essentially invoking the simplify tactic.
5960 >>> g.add(x + 1 >= 2)
5963 >>> g2 = g.simplify()
5966 >>> # g was not modified
5971 return t.apply(self, *arguments, **keywords)[0]
5974 """Return goal `self` as a single Z3 expression.
5993 return And([self.
get(i)
for i
in range(len(self))], self.
ctx)
6003 """A collection (vector) of ASTs."""
6012 assert ctx
is not None
6017 if self.
vector is not None and self.
ctx.ref()
is not None and Z3_ast_vector_dec_ref
is not None:
6021 """Return the size of the vector `self`.
6026 >>> A.push(Int('x'))
6027 >>> A.push(Int('x'))
6034 """Return the AST at position `i`.
6037 >>> A.push(Int('x') + 1)
6038 >>> A.push(Int('y'))
6045 if isinstance(i, int):
6053 elif isinstance(i, slice):
6055 for ii
in range(*i.indices(self.
__len__())):
6063 """Update AST at position `i`.
6066 >>> A.push(Int('x') + 1)
6067 >>> A.push(Int('y'))
6079 """Add `v` in the end of the vector.
6084 >>> A.push(Int('x'))
6091 """Resize the vector to `sz` elements.
6097 >>> for i in range(10): A[i] = Int('x')
6104 """Return `True` if the vector contains `item`.
6127 """Copy vector `self` to context `other_ctx`.
6133 >>> B = A.translate(c2)
6149 return obj_to_string(self)
6152 """Return a textual representation of the s-expression representing the vector."""
6163 """A mapping from ASTs to ASTs."""
6172 assert ctx
is not None
6180 if self.
map is not None and self.
ctx.ref()
is not None and Z3_ast_map_dec_ref
is not None:
6184 """Return the size of the map.
6190 >>> M[x] = IntVal(1)
6197 """Return `True` if the map contains key `key`.
6210 """Retrieve the value associated with key `key`.
6221 """Add/Update key `k` with value `v`.
6230 >>> M[x] = IntVal(1)
6240 """Remove the entry associated with key `k`.
6254 """Remove all entries from the map.
6259 >>> M[x+x] = IntVal(1)
6269 """Return an AstVector containing all keys in the map.
6274 >>> M[x+x] = IntVal(1)
6288 """Store the value of the interpretation of a function in a particular point."""
6299 if self.
ctx.ref()
is not None and Z3_func_entry_dec_ref
is not None:
6303 """Return the number of arguments in the given entry.
6305 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6307 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6312 >>> f_i.num_entries()
6314 >>> e = f_i.entry(0)
6321 """Return the value of argument `idx`.
6323 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6325 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6330 >>> f_i.num_entries()
6332 >>> e = f_i.entry(0)
6343 ... except IndexError:
6344 ... print("index error")
6352 """Return the value of the function at point `self`.
6354 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6356 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6361 >>> f_i.num_entries()
6363 >>> e = f_i.entry(0)
6374 """Return entry `self` as a Python list.
6375 >>> f = Function('f', IntSort(), IntSort(), IntSort())
6377 >>> s.add(f(0, 1) == 10, f(1, 2) == 20, f(1, 0) == 10)
6382 >>> f_i.num_entries()
6384 >>> e = f_i.entry(0)
6389 args.append(self.
value())
6397 """Stores the interpretation of a function in a Z3 model."""
6402 if self.
f is not None:
6406 if self.
f is not None and self.
ctx.ref()
is not None and Z3_func_interp_dec_ref
is not None:
6411 Return the `else` value for a function interpretation.
6412 Return None if Z3 did not specify the `else` value for
6415 >>> f = Function('f', IntSort(), IntSort())
6417 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6423 >>> m[f].else_value()
6433 """Return the number of entries/points in the function interpretation `self`.
6435 >>> f = Function('f', IntSort(), IntSort())
6437 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6443 >>> m[f].num_entries()
6449 """Return the number of arguments for each entry in the function interpretation `self`.
6451 >>> f = Function('f', IntSort(), IntSort())
6453 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6463 """Return an entry at position `idx < self.num_entries()` in the function interpretation `self`.
6465 >>> f = Function('f', IntSort(), IntSort())
6467 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6473 >>> m[f].num_entries()
6483 """Copy model 'self' to context 'other_ctx'.
6494 """Return the function interpretation as a Python list.
6495 >>> f = Function('f', IntSort(), IntSort())
6497 >>> s.add(f(0) == 1, f(1) == 1, f(2) == 0)
6511 return obj_to_string(self)
6515 """Model/Solution of a satisfiability problem (aka system of constraints)."""
6518 assert ctx
is not None
6524 if self.
ctx.ref()
is not None and Z3_model_dec_ref
is not None:
6528 return obj_to_string(self)
6531 """Return a textual representation of the s-expression representing the model."""
6534 def eval(self, t, model_completion=False):
6535 """Evaluate the expression `t` in the model `self`.
6536 If `model_completion` is enabled, then a default interpretation is automatically added
6537 for symbols that do not have an interpretation in the model `self`.
6541 >>> s.add(x > 0, x < 2)
6554 >>> m.eval(y, model_completion=True)
6556 >>> # Now, m contains an interpretation for y
6563 raise Z3Exception(
"failed to evaluate expression in the model")
6566 """Alias for `eval`.
6570 >>> s.add(x > 0, x < 2)
6574 >>> m.evaluate(x + 1)
6576 >>> m.evaluate(x == 1)
6579 >>> m.evaluate(y + x)
6583 >>> m.evaluate(y, model_completion=True)
6585 >>> # Now, m contains an interpretation for y
6586 >>> m.evaluate(y + x)
6589 return self.
eval(t, model_completion)
6592 """Return the number of constant and function declarations in the model `self`.
6594 >>> f = Function('f', IntSort(), IntSort())
6597 >>> s.add(x > 0, f(x) != x)
6606 return num_consts + num_funcs
6609 """Return the interpretation for a given declaration or constant.
6611 >>> f = Function('f', IntSort(), IntSort())
6614 >>> s.add(x > 0, x < 2, f(x) == 0)
6624 _z3_assert(isinstance(decl, FuncDeclRef)
or is_const(decl),
"Z3 declaration expected")
6628 if decl.arity() == 0:
6630 if _r.value
is None:
6646 sz = fi.num_entries()
6650 e =
Store(e, fe.arg_value(0), fe.value())
6661 """Return the number of uninterpreted sorts that contain an interpretation in the model `self`.
6663 >>> A = DeclareSort('A')
6664 >>> a, b = Consts('a b', A)
6676 """Return the uninterpreted sort at position `idx` < self.num_sorts().
6678 >>> A = DeclareSort('A')
6679 >>> B = DeclareSort('B')
6680 >>> a1, a2 = Consts('a1 a2', A)
6681 >>> b1, b2 = Consts('b1 b2', B)
6683 >>> s.add(a1 != a2, b1 != b2)
6699 """Return all uninterpreted sorts that have an interpretation in the model `self`.
6701 >>> A = DeclareSort('A')
6702 >>> B = DeclareSort('B')
6703 >>> a1, a2 = Consts('a1 a2', A)
6704 >>> b1, b2 = Consts('b1 b2', B)
6706 >>> s.add(a1 != a2, b1 != b2)
6716 """Return the interpretation for the uninterpreted sort `s` in the model `self`.
6718 >>> A = DeclareSort('A')
6719 >>> a, b = Consts('a b', A)
6725 >>> m.get_universe(A)
6729 _z3_assert(isinstance(s, SortRef),
"Z3 sort expected")
6736 """If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned.
6737 If `idx` is a declaration, then the actual interpretation is returned.
6739 The elements can be retrieved using position or the actual declaration.
6741 >>> f = Function('f', IntSort(), IntSort())
6744 >>> s.add(x > 0, x < 2, f(x) == 0)
6758 >>> for d in m: print("%s -> %s" % (d, m[d]))
6763 if idx >= len(self):
6766 if (idx < num_consts):
6770 if isinstance(idx, FuncDeclRef):
6774 if isinstance(idx, SortRef):
6777 _z3_assert(
False,
"Integer, Z3 declaration, or Z3 constant expected")
6781 """Return a list with all symbols that have an interpretation in the model `self`.
6782 >>> f = Function('f', IntSort(), IntSort())
6785 >>> s.add(x > 0, x < 2, f(x) == 0)
6800 """Update the interpretation of a constant"""
6803 if is_func_decl(x)
and x.arity() != 0
and isinstance(value, FuncInterp):
6807 for i
in range(value.num_entries()):
6812 v.push(e.arg_value(j))
6817 raise Z3Exception(
"Expecting 0-ary function or constant expression")
6822 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6825 _z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
6830 """Perform model-based projection on fml with respect to vars.
6831 Assume that the model satisfies fml. Then compute a projection fml_p, such
6832 that vars do not occur free in fml_p, fml_p is true in the model and
6833 fml_p => exists vars . fml
6835 ctx = self.
ctx.ref()
6836 _vars = (Ast * len(vars))()
6837 for i
in range(len(vars)):
6838 _vars[i] = vars[i].as_ast()
6842 """Perform model-based projection, but also include realizer terms for the projected variables"""
6843 ctx = self.
ctx.ref()
6844 _vars = (Ast * len(vars))()
6845 for i
in range(len(vars)):
6846 _vars[i] = vars[i].as_ast()
6848 result = Z3_qe_model_project_with_witness(ctx, self.
model, len(vars), _vars, fml.ast, defs.map)
6863 for k, v
in eval.items():
6864 mdl.update_value(k, v)
6869 """Return true if n is a Z3 expression of the form (_ as-array f)."""
6870 return isinstance(n, ExprRef)
and Z3_is_as_array(n.ctx.ref(), n.as_ast())
6874 """Return the function declaration f associated with a Z3 expression of the form (_ as-array f)."""
6887 """Statistics for `Solver.check()`."""
6898 if self.
ctx.ref()
is not None and Z3_stats_dec_ref
is not None:
6905 out.write(u(
'<table border="1" cellpadding="2" cellspacing="0">'))
6908 out.write(u(
'<tr style="background-color:#CFCFCF">'))
6911 out.write(u(
"<tr>"))
6913 out.write(u(
"<td>%s</td><td>%s</td></tr>" % (k, v)))
6914 out.write(u(
"</table>"))
6915 return out.getvalue()
6920 """Return the number of statistical counters.
6923 >>> s = Then('simplify', 'nlsat').solver()
6927 >>> st = s.statistics()
6934 """Return the value of statistical counter at position `idx`. The result is a pair (key, value).
6937 >>> s = Then('simplify', 'nlsat').solver()
6941 >>> st = s.statistics()
6945 ('nlsat propagations', 2)
6947 ('nlsat restarts', 1)
6949 if idx >= len(self):
6958 """Return the list of statistical counters.
6961 >>> s = Then('simplify', 'nlsat').solver()
6965 >>> st = s.statistics()
6970 """Return the value of a particular statistical counter.
6973 >>> s = Then('simplify', 'nlsat').solver()
6977 >>> st = s.statistics()
6978 >>> st.get_key_value('nlsat propagations')
6981 for idx
in range(len(self)):
6987 raise Z3Exception(
"unknown key")
6990 """Access the value of statistical using attributes.
6992 Remark: to access a counter containing blank spaces (e.g., 'nlsat propagations'),
6993 we should use '_' (e.g., 'nlsat_propagations').
6996 >>> s = Then('simplify', 'nlsat').solver()
7000 >>> st = s.statistics()
7001 >>> st.nlsat_propagations
7006 key = name.replace(
"_",
" ")
7010 raise AttributeError
7020 """Represents the result of a satisfiability check: sat, unsat, unknown.
7026 >>> isinstance(r, CheckSatResult)
7037 return isinstance(other, CheckSatResult)
and self.
r == other.r
7040 return not self.
__eq__(other)
7044 if self.
r == Z3_L_TRUE:
7046 elif self.
r == Z3_L_FALSE:
7047 return "<b>unsat</b>"
7049 return "<b>unknown</b>"
7051 if self.
r == Z3_L_TRUE:
7053 elif self.
r == Z3_L_FALSE:
7059 in_html = in_html_mode()
7062 set_html_mode(in_html)
7073 Solver API provides methods for implementing the main SMT 2.0 commands:
7074 push, pop, check, get-model, etc.
7077 def __init__(self, solver=None, ctx=None, logFile=None):
7078 assert solver
is None or ctx
is not None
7087 if logFile
is not None:
7088 self.
set(
"smtlib2_log", logFile)
7091 if self.
solver is not None and self.
ctx.ref()
is not None and Z3_solver_dec_ref
is not None:
7102 """Set a configuration option.
7103 The method `help()` return a string containing all available options.
7106 >>> # The option MBQI can be set using three different approaches.
7107 >>> s.set(mbqi=True)
7108 >>> s.set('MBQI', True)
7109 >>> s.set(':mbqi', True)
7115 """Create a backtracking point.
7137 """Backtrack \\c num backtracking points.
7159 """Return the current number of backtracking points.
7177 """Remove all asserted constraints and backtracking points created using `push()`.
7191 """Assert constraints into the solver.
7195 >>> s.assert_exprs(x > 0, x < 2)
7202 if isinstance(arg, Goal)
or isinstance(arg, AstVector):
7210 """Assert constraints into the solver.
7214 >>> s.add(x > 0, x < 2)
7225 """Assert constraints into the solver.
7229 >>> s.append(x > 0, x < 2)
7236 """Assert constraints into the solver.
7240 >>> s.insert(x > 0, x < 2)
7247 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
7249 If `p` is a string, it will be automatically converted into a Boolean constant.
7254 >>> s.set(unsat_core=True)
7255 >>> s.assert_and_track(x > 0, 'p1')
7256 >>> s.assert_and_track(x != 1, 'p2')
7257 >>> s.assert_and_track(x < 0, p3)
7258 >>> print(s.check())
7260 >>> c = s.unsat_core()
7270 if isinstance(p, str):
7272 _z3_assert(isinstance(a, BoolRef),
"Boolean expression expected")
7277 """Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
7283 >>> s.add(x > 0, x < 2)
7286 >>> s.model().eval(x)
7292 >>> s.add(2**x == 4)
7298 num = len(assumptions)
7299 _assumptions = (Ast * num)()
7300 for i
in range(num):
7301 _assumptions[i] = s.cast(assumptions[i]).as_ast()
7306 """Return a model for the last `check()`.
7308 This function raises an exception if
7309 a model is not available (e.g., last `check()` returned unsat).
7313 >>> s.add(a + 2 == 0)
7322 raise Z3Exception(
"model is not available")
7325 """Import model converter from other into the current solver"""
7326 Z3_solver_import_model_converter(self.ctx.ref(), other.solver, self.solver)
7328 def interrupt(self):
7329 """Interrupt the execution of the solver object.
7330 Remarks: This ensures that the interrupt applies only
7331 to the given solver object and it applies only if it is running.
7333 Z3_solver_interrupt(self.ctx.ref(), self.solver)
7335 def unsat_core(self):
7336 """Return a subset (as an AST vector) of the assumptions provided to the last check().
7338 These are the assumptions Z3 used in the unsatisfiability proof.
7339 Assumptions are available in Z3. They are used to extract unsatisfiable cores.
7340 They may be also used to "retract" assumptions. Note that, assumptions are not really
7341 "soft constraints", but they can be used to implement them.
7343 >>> p1, p2, p3 = Bools('p1 p2 p3')
7344 >>> x, y = Ints('x y')
7346 >>> s.add(Implies(p1, x > 0))
7347 >>> s.add(Implies(p2, y > x))
7348 >>> s.add(Implies(p2, y < 1))
7349 >>> s.add(Implies(p3, y > -3))
7350 >>> s.check(p1, p2, p3)
7352 >>> core = s.unsat_core()
7361 >>> # "Retracting" p2
7365 return AstVector(Z3_solver_get_unsat_core(self.ctx.ref(), self.solver), self.ctx)
7367 def consequences(self, assumptions, variables):
7368 """Determine fixed values for the variables based on the solver state and assumptions.
7370 >>> a, b, c, d = Bools('a b c d')
7371 >>> s.add(Implies(a,b), Implies(b, c))
7372 >>> s.consequences([a],[b,c,d])
7373 (sat, [Implies(a, b), Implies(a, c)])
7374 >>> s.consequences([Not(c),d],[a,b,c,d])
7375 (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
7377 if isinstance(assumptions, list):
7378 _asms = AstVector(None, self.ctx)
7379 for a in assumptions:
7382 if isinstance(variables, list):
7383 _vars = AstVector(None, self.ctx)
7387 _z3_assert(isinstance(assumptions, AstVector), "ast vector expected")
7388 _z3_assert(isinstance(variables, AstVector), "ast vector expected")
7389 consequences = AstVector(None, self.ctx)
7390 r = Z3_solver_get_consequences(self.ctx.ref(), self.solver, assumptions.vector,
7391 variables.vector, consequences.vector)
7392 sz = len(consequences)
7393 consequences = [consequences[i] for i in range(sz)]
7394 return CheckSatResult(r), consequences
7396 def from_file(self, filename):
7397 """Parse assertions from a file"""
7398 Z3_solver_from_file(self.ctx.ref(), self.solver, filename)
7400 def from_string(self, s):
7401 """Parse assertions from a string"""
7402 Z3_solver_from_string(self.ctx.ref(), self.solver, s)
7404 def cube(self, vars=None):
7406 The method takes an optional set of variables that restrict which
7407 variables may be used as a starting point for cubing.
7408 If vars is not None, then the first case split is based on a variable in
7411 self.cube_vs = AstVector(None, self.ctx)
7412 if vars is not None:
7414 self.cube_vs.push(v)
7416 lvl = self.backtrack_level
7417 self.backtrack_level = 4000000000
7418 r = AstVector(Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
7419 if (len(r) == 1 and is_false(r[0])):
7425 def cube_vars(self):
7426 """Access the set of variables that were touched by the most recently generated cube.
7427 This set of variables can be used as a starting point for additional cubes.
7428 The idea is that variables that appear in clauses that are reduced by the most recent
7429 cube are likely more useful to cube on."""
7433 """Retrieve congruence closure root of the term t relative to the current search state
7434 The function primarily works for SimpleSolver. Terms and variables that are
7435 eliminated during pre-processing are not visible to the congruence closure.
7437 t = _py2expr(t, self.ctx)
7438 return _to_expr_ref(Z3_solver_congruence_root(self.ctx.ref(), self.solver, t.ast), self.ctx)
7441 """Retrieve congruence closure sibling of the term t relative to the current search state
7442 The function primarily works for SimpleSolver. Terms and variables that are
7443 eliminated during pre-processing are not visible to the congruence closure.
7445 t = _py2expr(t, self.ctx)
7446 return _to_expr_ref(Z3_solver_congruence_next(self.ctx.ref(), self.solver, t.ast), self.ctx)
7448 def explain_congruent(self, a, b):
7449 """Explain congruence of a and b relative to the current search state"""
7450 a = _py2expr(a, self.ctx)
7451 b = _py2expr(b, self.ctx)
7452 return _to_expr_ref(Z3_solver_congruence_explain(self.ctx.ref(), self.solver, a.ast, b.ast), self.ctx)
7455 def solve_for(self, ts):
7456 """Retrieve a solution for t relative to linear equations maintained in the current state."""
7457 vars = AstVector(ctx=self.ctx);
7458 terms = AstVector(ctx=self.ctx);
7459 guards = AstVector(ctx=self.ctx);
7461 t = _py2expr(t, self.ctx)
7463 Z3_solver_solve_for(self.ctx.ref(), self.solver, vars.vector, terms.vector, guards.vector)
7464 return [(vars[i], terms[i], guards[i]) for i in range(len(vars))]
7468 """Return a proof for the last `check()`. Proof construction must be enabled."""
7469 return _to_expr_ref(Z3_solver_get_proof(self.ctx.ref(), self.solver), self.ctx)
7471 def assertions(self):
7472 """Return an AST vector containing all added constraints.
7483 return AstVector(Z3_solver_get_assertions(self.ctx.ref(), self.solver), self.ctx)
7486 """Return an AST vector containing all currently inferred units.
7488 return AstVector(Z3_solver_get_units(self.ctx.ref(), self.solver), self.ctx)
7490 def non_units(self):
7491 """Return an AST vector containing all atomic formulas in solver state that are not units.
7493 return AstVector(Z3_solver_get_non_units(self.ctx.ref(), self.solver), self.ctx)
7495 def trail_levels(self):
7496 """Return trail and decision levels of the solver state after a check() call.
7498 trail = self.trail()
7499 levels = (ctypes.c_uint * len(trail))()
7500 Z3_solver_get_levels(self.ctx.ref(), self.solver, trail.vector, len(trail), levels)
7501 return trail, levels
7503 def set_initial_value(self, var, value):
7504 """initialize the solver's state by setting the initial value of var to value
7507 value = s.cast(value)
7508 Z3_solver_set_initial_value(self.ctx.ref(), self.solver, var.ast, value.ast)
7511 """Return trail of the solver state after a check() call.
7513 return AstVector(Z3_solver_get_trail(self.ctx.ref(), self.solver), self.ctx)
7515 def statistics(self):
7516 """Return statistics for the last `check()`.
7518 >>> s = SimpleSolver()
7523 >>> st = s.statistics()
7524 >>> st.get_key_value('final checks')
7531 return Statistics(Z3_solver_get_statistics(self.ctx.ref(), self.solver), self.ctx)
7533 def reason_unknown(self):
7534 """Return a string describing why the last `check()` returned `unknown`.
7537 >>> s = SimpleSolver()
7538 >>> s.add(x == 2**x)
7541 >>> s.reason_unknown()
7542 '(incomplete (theory arithmetic))'
7544 return Z3_solver_get_reason_unknown(self.ctx.ref(), self.solver)
7547 """Display a string describing all available options."""
7548 print(Z3_solver_get_help(self.ctx.ref(), self.solver))
7550 def param_descrs(self):
7551 """Return the parameter description set."""
7552 return ParamDescrsRef(Z3_solver_get_param_descrs(self.ctx.ref(), self.solver), self.ctx)
7555 """Return a formatted string with all added constraints."""
7556 return obj_to_string(self)
7558 def translate(self, target):
7559 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
7563 >>> s1 = Solver(ctx=c1)
7564 >>> s2 = s1.translate(c2)
7567 _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
7568 solver = Z3_solver_translate(self.ctx.ref(), self.solver, target.ref())
7569 return Solver(solver, target)
7572 return self.translate(self.ctx)
7574 def __deepcopy__(self, memo={}):
7575 return self.translate(self.ctx)
7578 """Return a formatted string (in Lisp-like format) with all added constraints.
7579 We say the string is in s-expression format.
7587 return Z3_solver_to_string(self.ctx.ref(), self.solver)
7589 def dimacs(self, include_names=True):
7590 """Return a textual representation of the solver in DIMACS format."""
7591 return Z3_solver_to_dimacs_string(self.ctx.ref(), self.solver, include_names)
7594 """return SMTLIB2 formatted benchmark for solver's assertions"""
7595 es = self.assertions()
7601 for i in range(sz1):
7602 v[i] = es[i].as_ast()
7604 e = es[sz1].as_ast()
7606 e = BoolVal(True, self.ctx).as_ast()
7607 return Z3_benchmark_to_smtlib_string(
7608 self.ctx.ref(), "benchmark generated from python API", "", "unknown", "", sz1, v, e,
7612def SolverFor(logic, ctx=None, logFile=None):
7613 """Create a solver customized for the given logic.
7615 The parameter `logic` is a string. It should be contains
7616 the name of a SMT-LIB logic.
7617 See http://www.smtlib.org/ for the name of all available logics.
7619 >>> s = SolverFor("QF_LIA")
7629 logic = to_symbol(logic)
7630 return Solver(Z3_mk_solver_for_logic(ctx.ref(), logic), ctx, logFile)
7633def SimpleSolver(ctx=None, logFile=None):
7634 """Return a simple general purpose solver with limited amount of preprocessing.
7636 >>> s = SimpleSolver()
7643 return Solver(Z3_mk_simple_solver(ctx.ref()), ctx, logFile)
7645#########################################
7649#########################################
7652class Fixedpoint(Z3PPObject):
7653 """Fixedpoint API provides methods for solving with recursive predicates"""
7655 def __init__(self, fixedpoint=None, ctx=None):
7656 assert fixedpoint is None or ctx is not None
7657 self.ctx = _get_ctx(ctx)
7658 self.fixedpoint = None
7659 if fixedpoint is None:
7660 self.fixedpoint = Z3_mk_fixedpoint(self.ctx.ref())
7662 self.fixedpoint = fixedpoint
7663 Z3_fixedpoint_inc_ref(self.ctx.ref(), self.fixedpoint)
7666 def __deepcopy__(self, memo={}):
7667 return FixedPoint(self.fixedpoint, self.ctx)
7670 if self.fixedpoint is not None and self.ctx.ref() is not None and Z3_fixedpoint_dec_ref is not None:
7671 Z3_fixedpoint_dec_ref(self.ctx.ref(), self.fixedpoint)
7673 def set(self, *args, **keys):
7674 """Set a configuration option. The method `help()` return a string containing all available options.
7676 p = args2params(args, keys, self.ctx)
7677 Z3_fixedpoint_set_params(self.ctx.ref(), self.fixedpoint, p.params)
7680 """Display a string describing all available options."""
7681 print(Z3_fixedpoint_get_help(self.ctx.ref(), self.fixedpoint))
7683 def param_descrs(self):
7684 """Return the parameter description set."""
7685 return ParamDescrsRef(Z3_fixedpoint_get_param_descrs(self.ctx.ref(), self.fixedpoint), self.ctx)
7687 def assert_exprs(self, *args):
7688 """Assert constraints as background axioms for the fixedpoint solver."""
7689 args = _get_args(args)
7690 s = BoolSort(self.ctx)
7692 if isinstance(arg, Goal) or isinstance(arg, AstVector):
7694 f = self.abstract(f)
7695 Z3_fixedpoint_assert(self.ctx.ref(), self.fixedpoint, f.as_ast())
7698 arg = self.abstract(arg)
7699 Z3_fixedpoint_assert(self.ctx.ref(), self.fixedpoint, arg.as_ast())
7701 def add(self, *args):
7702 """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
7703 self.assert_exprs(*args)
7705 def __iadd__(self, fml):
7709 def append(self, *args):
7710 """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
7711 self.assert_exprs(*args)
7713 def insert(self, *args):
7714 """Assert constraints as background axioms for the fixedpoint solver. Alias for assert_expr."""
7715 self.assert_exprs(*args)
7717 def add_rule(self, head, body=None, name=None):
7718 """Assert rules defining recursive predicates to the fixedpoint solver.
7721 >>> s = Fixedpoint()
7722 >>> s.register_relation(a.decl())
7723 >>> s.register_relation(b.decl())
7731 name = to_symbol(name, self.ctx)
7733 head = self.abstract(head)
7734 Z3_fixedpoint_add_rule(self.ctx.ref(), self.fixedpoint, head.as_ast(), name)
7736 body = _get_args(body)
7737 f = self.abstract(Implies(And(body, self.ctx), head))
7738 Z3_fixedpoint_add_rule(self.ctx.ref(), self.fixedpoint, f.as_ast(), name)
7740 def rule(self, head, body=None, name=None):
7741 """Assert rules defining recursive predicates to the fixedpoint solver. Alias for add_rule."""
7742 self.add_rule(head, body, name)
7744 def fact(self, head, name=None):
7745 """Assert facts defining recursive predicates to the fixedpoint solver. Alias for add_rule."""
7746 self.add_rule(head, None, name)
7748 def query(self, *query):
7749 """Query the fixedpoint engine whether formula is derivable.
7750 You can also pass an tuple or list of recursive predicates.
7752 query = _get_args(query)
7754 if sz >= 1 and isinstance(query[0], FuncDeclRef):
7755 _decls = (FuncDecl * sz)()
7760 r = Z3_fixedpoint_query_relations(self.ctx.ref(), self.fixedpoint, sz, _decls)
7765 query = And(query, self.ctx)
7766 query = self.abstract(query, False)
7767 r = Z3_fixedpoint_query(self.ctx.ref(), self.fixedpoint, query.as_ast())
7768 return CheckSatResult(r)
7770 def query_from_lvl(self, lvl, *query):
7771 """Query the fixedpoint engine whether formula is derivable starting at the given query level.
7773 query = _get_args(query)
7775 if sz >= 1 and isinstance(query[0], FuncDecl):
7776 _z3_assert(False, "unsupported")
7782 query = self.abstract(query, False)
7783 r = Z3_fixedpoint_query_from_lvl(self.ctx.ref(), self.fixedpoint, query.as_ast(), lvl)
7784 return CheckSatResult(r)
7786 def update_rule(self, head, body, name):
7790 name = to_symbol(name, self.ctx)
7791 body = _get_args(body)
7792 f = self.abstract(Implies(And(body, self.ctx), head))
7793 Z3_fixedpoint_update_rule(self.ctx.ref(), self.fixedpoint, f.as_ast(), name)
7795 def get_answer(self):
7796 """Retrieve answer from last query call."""
7797 r = Z3_fixedpoint_get_answer(self.ctx.ref(), self.fixedpoint)
7798 return _to_expr_ref(r, self.ctx)
7800 def get_ground_sat_answer(self):
7801 """Retrieve a ground cex from last query call."""
7802 r = Z3_fixedpoint_get_ground_sat_answer(self.ctx.ref(), self.fixedpoint)
7803 return _to_expr_ref(r, self.ctx)
7805 def get_rules_along_trace(self):
7806 """retrieve rules along the counterexample trace"""
7807 return AstVector(Z3_fixedpoint_get_rules_along_trace(self.ctx.ref(), self.fixedpoint), self.ctx)
7809 def get_rule_names_along_trace(self):
7810 """retrieve rule names along the counterexample trace"""
7811 # this is a hack as I don't know how to return a list of symbols from C++;
7812 # obtain names as a single string separated by semicolons
7813 names = _symbol2py(self.ctx, Z3_fixedpoint_get_rule_names_along_trace(self.ctx.ref(), self.fixedpoint))
7814 # split into individual names
7815 return names.split(";")
7817 def get_num_levels(self, predicate):
7818 """Retrieve number of levels used for predicate in PDR engine"""
7819 return Z3_fixedpoint_get_num_levels(self.ctx.ref(), self.fixedpoint, predicate.ast)
7821 def get_cover_delta(self, level, predicate):
7822 """Retrieve properties known about predicate for the level'th unfolding.
7823 -1 is treated as the limit (infinity)
7825 r = Z3_fixedpoint_get_cover_delta(self.ctx.ref(), self.fixedpoint, level, predicate.ast)
7826 return _to_expr_ref(r, self.ctx)
7828 def add_cover(self, level, predicate, property):
7829 """Add property to predicate for the level'th unfolding.
7830 -1 is treated as infinity (infinity)
7832 Z3_fixedpoint_add_cover(self.ctx.ref(), self.fixedpoint, level, predicate.ast, property.ast)
7834 def register_relation(self, *relations):
7835 """Register relation as recursive"""
7836 relations = _get_args(relations)
7838 Z3_fixedpoint_register_relation(self.ctx.ref(), self.fixedpoint, f.ast)
7840 def set_predicate_representation(self, f, *representations):
7841 """Control how relation is represented"""
7842 representations = _get_args(representations)
7843 representations = [to_symbol(s) for s in representations]
7844 sz = len(representations)
7845 args = (Symbol * sz)()
7847 args[i] = representations[i]
7848 Z3_fixedpoint_set_predicate_representation(self.ctx.ref(), self.fixedpoint, f.ast, sz, args)
7850 def parse_string(self, s):
7851 """Parse rules and queries from a string"""
7852 return AstVector(Z3_fixedpoint_from_string(self.ctx.ref(), self.fixedpoint, s), self.ctx)
7854 def parse_file(self, f):
7855 """Parse rules and queries from a file"""
7856 return AstVector(Z3_fixedpoint_from_file(self.ctx.ref(), self.fixedpoint, f), self.ctx)
7858 def get_rules(self):
7859 """retrieve rules that have been added to fixedpoint context"""
7860 return AstVector(Z3_fixedpoint_get_rules(self.ctx.ref(), self.fixedpoint), self.ctx)
7862 def get_assertions(self):
7863 """retrieve assertions that have been added to fixedpoint context"""
7864 return AstVector(Z3_fixedpoint_get_assertions(self.ctx.ref(), self.fixedpoint), self.ctx)
7867 """Return a formatted string with all added rules and constraints."""
7871 """Return a formatted string (in Lisp-like format) with all added constraints.
7872 We say the string is in s-expression format.
7874 return Z3_fixedpoint_to_string(self.ctx.ref(), self.fixedpoint, 0, (Ast * 0)())
7876 def to_string(self, queries):
7877 """Return a formatted string (in Lisp-like format) with all added constraints.
7878 We say the string is in s-expression format.
7879 Include also queries.
7881 args, len = _to_ast_array(queries)
7882 return Z3_fixedpoint_to_string(self.ctx.ref(), self.fixedpoint, len, args)
7884 def statistics(self):
7885 """Return statistics for the last `query()`.
7887 return Statistics(Z3_fixedpoint_get_statistics(self.ctx.ref(), self.fixedpoint), self.ctx)
7889 def reason_unknown(self):
7890 """Return a string describing why the last `query()` returned `unknown`.
7892 return Z3_fixedpoint_get_reason_unknown(self.ctx.ref(), self.fixedpoint)
7894 def declare_var(self, *vars):
7895 """Add variable or several variables.
7896 The added variable or variables will be bound in the rules
7899 vars = _get_args(vars)
7903 def abstract(self, fml, is_forall=True):
7907 return ForAll(self.vars, fml)
7909 return Exists(self.vars, fml)
7912#########################################
7916#########################################
7918class FiniteDomainSortRef(SortRef):
7919 """Finite domain sort."""
7922 """Return the size of the finite domain sort"""
7923 r = (ctypes.c_ulonglong * 1)()
7924 if Z3_get_finite_domain_sort_size(self.ctx_ref(), self.ast, r):
7927 raise Z3Exception("Failed to retrieve finite domain sort size")
7930def FiniteDomainSort(name, sz, ctx=None):
7931 """Create a named finite domain sort of a given size sz"""
7932 if not isinstance(name, Symbol):
7933 name = to_symbol(name)
7935 return FiniteDomainSortRef(Z3_mk_finite_domain_sort(ctx.ref(), name, sz), ctx)
7938def is_finite_domain_sort(s):
7939 """Return True if `s` is a Z3 finite-domain sort.
7941 >>> is_finite_domain_sort(FiniteDomainSort('S', 100))
7943 >>> is_finite_domain_sort(IntSort())
7946 return isinstance(s, FiniteDomainSortRef)
7949class FiniteDomainRef(ExprRef):
7950 """Finite-domain expressions."""
7953 """Return the sort of the finite-domain expression `self`."""
7954 return FiniteDomainSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
7956 def as_string(self):
7957 """Return a Z3 floating point expression as a Python string."""
7958 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
7961def is_finite_domain(a):
7962 """Return `True` if `a` is a Z3 finite-domain expression.
7964 >>> s = FiniteDomainSort('S', 100)
7965 >>> b = Const('b', s)
7966 >>> is_finite_domain(b)
7968 >>> is_finite_domain(Int('x'))
7971 return isinstance(a, FiniteDomainRef)
7974class FiniteDomainNumRef(FiniteDomainRef):
7975 """Integer values."""
7978 """Return a Z3 finite-domain numeral as a Python long (bignum) numeral.
7980 >>> s = FiniteDomainSort('S', 100)
7981 >>> v = FiniteDomainVal(3, s)
7987 return int(self.as_string())
7989 def as_string(self):
7990 """Return a Z3 finite-domain numeral as a Python string.
7992 >>> s = FiniteDomainSort('S', 100)
7993 >>> v = FiniteDomainVal(42, s)
7997 return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
8000def FiniteDomainVal(val, sort, ctx=None):
8001 """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.
8003 >>> s = FiniteDomainSort('S', 256)
8004 >>> FiniteDomainVal(255, s)
8006 >>> FiniteDomainVal('100', s)
8010 _z3_assert(is_finite_domain_sort(sort), "Expected finite-domain sort")
8012 return FiniteDomainNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), sort.ast), ctx)
8015def is_finite_domain_value(a):
8016 """Return `True` if `a` is a Z3 finite-domain value.
8018 >>> s = FiniteDomainSort('S', 100)
8019 >>> b = Const('b', s)
8020 >>> is_finite_domain_value(b)
8022 >>> b = FiniteDomainVal(10, s)
8025 >>> is_finite_domain_value(b)
8028 return is_finite_domain(a) and _is_numeral(a.ctx, a.as_ast())
8031#########################################
8035#########################################
8037class OptimizeObjective:
8038 def __init__(self, opt, value, is_max):
8041 self._is_max = is_max
8045 return _to_expr_ref(Z3_optimize_get_lower(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8049 return _to_expr_ref(Z3_optimize_get_upper(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8051 def lower_values(self):
8053 return AstVector(Z3_optimize_get_lower_as_vector(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8055 def upper_values(self):
8057 return AstVector(Z3_optimize_get_upper_as_vector(opt.ctx.ref(), opt.optimize, self._value), opt.ctx)
8066 return "%s:%s" % (self._value, self._is_max)
8072def _global_on_model(ctx):
8073 (fn, mdl) = _on_models[ctx]
8077_on_model_eh = on_model_eh_type(_global_on_model)
8080class Optimize(Z3PPObject):
8081 """Optimize API provides methods for solving using objective functions and weighted soft constraints"""
8083 def __init__(self, optimize=None, ctx=None):
8084 self.ctx = _get_ctx(ctx)
8085 if optimize is None:
8086 self.optimize = Z3_mk_optimize(self.ctx.ref())
8088 self.optimize = optimize
8089 self._on_models_id = None
8090 Z3_optimize_inc_ref(self.ctx.ref(), self.optimize)
8092 def __deepcopy__(self, memo={}):
8093 return Optimize(self.optimize, self.ctx)
8096 if self.optimize is not None and self.ctx.ref() is not None and Z3_optimize_dec_ref is not None:
8097 Z3_optimize_dec_ref(self.ctx.ref(), self.optimize)
8098 if self._on_models_id is not None:
8099 del _on_models[self._on_models_id]
8101 def __enter__(self):
8105 def __exit__(self, *exc_info):
8108 def set(self, *args, **keys):
8109 """Set a configuration option.
8110 The method `help()` return a string containing all available options.
8112 p = args2params(args, keys, self.ctx)
8113 Z3_optimize_set_params(self.ctx.ref(), self.optimize, p.params)
8116 """Display a string describing all available options."""
8117 print(Z3_optimize_get_help(self.ctx.ref(), self.optimize))
8119 def param_descrs(self):
8120 """Return the parameter description set."""
8121 return ParamDescrsRef(Z3_optimize_get_param_descrs(self.ctx.ref(), self.optimize), self.ctx)
8123 def assert_exprs(self, *args):
8124 """Assert constraints as background axioms for the optimize solver."""
8125 args = _get_args(args)
8126 s = BoolSort(self.ctx)
8128 if isinstance(arg, Goal) or isinstance(arg, AstVector):
8130 Z3_optimize_assert(self.ctx.ref(), self.optimize, f.as_ast())
8133 Z3_optimize_assert(self.ctx.ref(), self.optimize, arg.as_ast())
8135 def add(self, *args):
8136 """Assert constraints as background axioms for the optimize solver. Alias for assert_expr."""
8137 self.assert_exprs(*args)
8139 def __iadd__(self, fml):
8143 def assert_and_track(self, a, p):
8144 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
8146 If `p` is a string, it will be automatically converted into a Boolean constant.
8151 >>> s.assert_and_track(x > 0, 'p1')
8152 >>> s.assert_and_track(x != 1, 'p2')
8153 >>> s.assert_and_track(x < 0, p3)
8154 >>> print(s.check())
8156 >>> c = s.unsat_core()
8166 if isinstance(p, str):
8167 p = Bool(p, self.ctx)
8168 _z3_assert(isinstance(a, BoolRef), "Boolean expression expected")
8169 _z3_assert(isinstance(p, BoolRef) and is_const(p), "Boolean expression expected")
8170 Z3_optimize_assert_and_track(self.ctx.ref(), self.optimize, a.as_ast(), p.as_ast())
8172 def add_soft(self, arg, weight="1", id=None):
8173 """Add soft constraint with optional weight and optional identifier.
8174 If no weight is supplied, then the penalty for violating the soft constraint
8176 Soft constraints are grouped by identifiers. Soft constraints that are
8177 added without identifiers are grouped by default.
8180 weight = "%d" % weight
8181 elif isinstance(weight, float):
8182 weight = "%f" % weight
8183 if not isinstance(weight, str):
8184 raise Z3Exception("weight should be a string or an integer")
8187 id = to_symbol(id, self.ctx)
8190 v = Z3_optimize_assert_soft(self.ctx.ref(), self.optimize, a.as_ast(), weight, id)
8191 return OptimizeObjective(self, v, False)
8192 if sys.version_info.major >= 3 and isinstance(arg, Iterable):
8193 return [asoft(a) for a in arg]
8196 def set_initial_value(self, var, value):
8197 """initialize the solver's state by setting the initial value of var to value
8200 value = s.cast(value)
8201 Z3_optimize_set_initial_value(self.ctx.ref(), self.optimize, var.ast, value.ast)
8203 def maximize(self, arg):
8204 """Add objective function to maximize."""
8205 return OptimizeObjective(
8207 Z3_optimize_maximize(self.ctx.ref(), self.optimize, arg.as_ast()),
8211 def minimize(self, arg):
8212 """Add objective function to minimize."""
8213 return OptimizeObjective(
8215 Z3_optimize_minimize(self.ctx.ref(), self.optimize, arg.as_ast()),
8220 """create a backtracking point for added rules, facts and assertions"""
8221 Z3_optimize_push(self.ctx.ref(), self.optimize)
8224 """restore to previously created backtracking point"""
8225 Z3_optimize_pop(self.ctx.ref(), self.optimize)
8227 def check(self, *assumptions):
8228 """Check consistency and produce optimal values."""
8229 assumptions = _get_args(assumptions)
8230 num = len(assumptions)
8231 _assumptions = (Ast * num)()
8232 for i in range(num):
8233 _assumptions[i] = assumptions[i].as_ast()
8234 return CheckSatResult(Z3_optimize_check(self.ctx.ref(), self.optimize, num, _assumptions))
8236 def reason_unknown(self):
8237 """Return a string that describes why the last `check()` returned `unknown`."""
8238 return Z3_optimize_get_reason_unknown(self.ctx.ref(), self.optimize)
8241 """Return a model for the last check()."""
8243 return ModelRef(Z3_optimize_get_model(self.ctx.ref(), self.optimize), self.ctx)
8245 raise Z3Exception("model is not available")
8247 def unsat_core(self):
8248 return AstVector(Z3_optimize_get_unsat_core(self.ctx.ref(), self.optimize), self.ctx)
8250 def lower(self, obj):
8251 if not isinstance(obj, OptimizeObjective):
8252 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8255 def upper(self, obj):
8256 if not isinstance(obj, OptimizeObjective):
8257 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8260 def lower_values(self, obj):
8261 if not isinstance(obj, OptimizeObjective):
8262 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8263 return obj.lower_values()
8265 def upper_values(self, obj):
8266 if not isinstance(obj, OptimizeObjective):
8267 raise Z3Exception("Expecting objective handle returned by maximize/minimize")
8268 return obj.upper_values()
8270 def from_file(self, filename):
8271 """Parse assertions and objectives from a file"""
8272 Z3_optimize_from_file(self.ctx.ref(), self.optimize, filename)
8274 def from_string(self, s):
8275 """Parse assertions and objectives from a string"""
8276 Z3_optimize_from_string(self.ctx.ref(), self.optimize, s)
8278 def assertions(self):
8279 """Return an AST vector containing all added constraints."""
8280 return AstVector(Z3_optimize_get_assertions(self.ctx.ref(), self.optimize), self.ctx)
8282 def objectives(self):
8283 """returns set of objective functions"""
8284 return AstVector(Z3_optimize_get_objectives(self.ctx.ref(), self.optimize), self.ctx)
8287 """Return a formatted string with all added rules and constraints."""
8291 """Return a formatted string (in Lisp-like format) with all added constraints.
8292 We say the string is in s-expression format.
8294 return Z3_optimize_to_string(self.ctx.ref(), self.optimize)
8296 def statistics(self):
8297 """Return statistics for the last check`.
8299 return Statistics(Z3_optimize_get_statistics(self.ctx.ref(), self.optimize), self.ctx)
8301 def set_on_model(self, on_model):
8302 """Register a callback that is invoked with every incremental improvement to
8303 objective values. The callback takes a model as argument.
8304 The life-time of the model is limited to the callback so the
8305 model has to be (deep) copied if it is to be used after the callback
8307 id = len(_on_models) + 41
8308 mdl = Model(self.ctx)
8309 _on_models[id] = (on_model, mdl)
8310 self._on_models_id = id
8311 Z3_optimize_register_model_eh(
8312 self.ctx.ref(), self.optimize, mdl.model, ctypes.c_void_p(id), _on_model_eh,
8316#########################################
8320#########################################
8321class ApplyResult(Z3PPObject):
8322 """An ApplyResult object contains the subgoals produced by a tactic when applied to a goal.
8323 It also contains model and proof converters.
8326 def __init__(self, result, ctx):
8327 self.result = result
8329 Z3_apply_result_inc_ref(self.ctx.ref(), self.result)
8331 def __deepcopy__(self, memo={}):
8332 return ApplyResult(self.result, self.ctx)
8335 if self.ctx.ref() is not None and Z3_apply_result_dec_ref is not None:
8336 Z3_apply_result_dec_ref(self.ctx.ref(), self.result)
8339 """Return the number of subgoals in `self`.
8341 >>> a, b = Ints('a b')
8343 >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
8344 >>> t = Tactic('split-clause')
8348 >>> t = Then(Tactic('split-clause'), Tactic('split-clause'))
8351 >>> t = Then(Tactic('split-clause'), Tactic('split-clause'), Tactic('propagate-values'))
8355 return int(Z3_apply_result_get_num_subgoals(self.ctx.ref(), self.result))
8357 def __getitem__(self, idx):
8358 """Return one of the subgoals stored in ApplyResult object `self`.
8360 >>> a, b = Ints('a b')
8362 >>> g.add(Or(a == 0, a == 1), Or(b == 0, b == 1), a > b)
8363 >>> t = Tactic('split-clause')
8366 [a == 0, Or(b == 0, b == 1), a > b]
8368 [a == 1, Or(b == 0, b == 1), a > b]
8370 if idx >= len(self):
8372 return Goal(goal=Z3_apply_result_get_subgoal(self.ctx.ref(), self.result, idx), ctx=self.ctx)
8375 return obj_to_string(self)
8378 """Return a textual representation of the s-expression representing the set of subgoals in `self`."""
8379 return Z3_apply_result_to_string(self.ctx.ref(), self.result)
8382 """Return a Z3 expression consisting of all subgoals.
8387 >>> g.add(Or(x == 2, x == 3))
8388 >>> r = Tactic('simplify')(g)
8390 [[Not(x <= 1), Or(x == 2, x == 3)]]
8392 And(Not(x <= 1), Or(x == 2, x == 3))
8393 >>> r = Tactic('split-clause')(g)
8395 [[x > 1, x == 2], [x > 1, x == 3]]
8397 Or(And(x > 1, x == 2), And(x > 1, x == 3))
8401 return BoolVal(False, self.ctx)
8403 return self[0].as_expr()
8405 return Or([self[i].as_expr() for i in range(len(self))])
8407#########################################
8411#########################################
8414 """Simplifiers act as pre-processing utilities for solvers.
8415 Build a custom simplifier and add it to a solve
r"""
8417 def __init__(self, simplifier, ctx=None):
8418 self.ctx = _get_ctx(ctx)
8419 self.simplifier = None
8420 if isinstance(simplifier, SimplifierObj):
8421 self.simplifier = simplifier
8422 elif isinstance(simplifier, list):
8423 simps = [Simplifier(s, ctx) for s in simplifier]
8424 self.simplifier = simps[0].simplifier
8425 for i in range(1, len(simps)):
8426 self.simplifier = Z3_simplifier_and_then(self.ctx.ref(), self.simplifier, simps[i].simplifier)
8427 Z3_simplifier_inc_ref(self.ctx.ref(), self.simplifier)
8431 _z3_assert(isinstance(simplifier, str), "simplifier name expected")
8433 self.simplifier = Z3_mk_simplifier(self.ctx.ref(), str(simplifier))
8435 raise Z3Exception("unknown simplifier '%s'" % simplifier)
8436 Z3_simplifier_inc_ref(self.ctx.ref(), self.simplifier)
8438 def __deepcopy__(self, memo={}):
8439 return Simplifier(self.simplifier, self.ctx)
8442 if self.simplifier is not None and self.ctx.ref() is not None and Z3_simplifier_dec_ref is not None:
8443 Z3_simplifier_dec_ref(self.ctx.ref(), self.simplifier)
8445 def using_params(self, *args, **keys):
8446 """Return a simplifier that uses the given configuration options"""
8447 p = args2params(args, keys, self.ctx)
8448 return Simplifier(Z3_simplifier_using_params(self.ctx.ref(), self.simplifier, p.params), self.ctx)
8450 def add(self, solver):
8451 """Return a solver that applies the simplification pre-processing specified by the simplifie
r"""
8452 return Solver(Z3_solver_add_simplifier(self.ctx.ref(), solver.solver, self.simplifier), self.ctx)
8455 """Display a string containing a description of the available options for the `self` simplifier."""
8456 print(Z3_simplifier_get_help(self.ctx.ref(), self.simplifier))
8458 def param_descrs(self):
8459 """Return the parameter description set."""
8460 return ParamDescrsRef(Z3_simplifier_get_param_descrs(self.ctx.ref(), self.simplifier), self.ctx)
8463#########################################
8467#########################################
8471 """Tactics transform, solver and/or simplify sets of constraints (Goal).
8472 A Tactic can be converted into a Solver using the method solver().
8474 Several combinators are available for creating new tactics using the built-in ones:
8475 Then(), OrElse(), FailIf(), Repeat(), When(), Cond().
8478 def __init__(self, tactic, ctx=None):
8479 self.ctx = _get_ctx(ctx)
8481 if isinstance(tactic, TacticObj):
8482 self.tactic = tactic
8485 _z3_assert(isinstance(tactic, str), "tactic name expected")
8487 self.tactic = Z3_mk_tactic(self.ctx.ref(), str(tactic))
8489 raise Z3Exception("unknown tactic '%s'" % tactic)
8490 Z3_tactic_inc_ref(self.ctx.ref(), self.tactic)
8492 def __deepcopy__(self, memo={}):
8493 return Tactic(self.tactic, self.ctx)
8496 if self.tactic is not None and self.ctx.ref() is not None and Z3_tactic_dec_ref is not None:
8497 Z3_tactic_dec_ref(self.ctx.ref(), self.tactic)
8499 def solver(self, logFile=None):
8500 """Create a solver using the tactic `self`.
8502 The solver supports the methods `push()` and `pop()`, but it
8503 will always solve each `check()` from scratch.
8505 >>> t = Then('simplify', 'nlsat')
8508 >>> s.add(x**2 == 2, x > 0)
8514 return Solver(Z3_mk_solver_from_tactic(self.ctx.ref(), self.tactic), self.ctx, logFile)
8516 def apply(self, goal, *arguments, **keywords):
8517 """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options.
8519 >>> x, y = Ints('x y')
8520 >>> t = Tactic('solve-eqs')
8521 >>> t.apply(And(x == 0, y >= x + 1))
8525 _z3_assert(isinstance(goal, (Goal, BoolRef)), "Z3 Goal or Boolean expressions expected")
8526 goal = _to_goal(goal)
8527 if len(arguments) > 0 or len(keywords) > 0:
8528 p = args2params(arguments, keywords, self.ctx)
8529 return ApplyResult(Z3_tactic_apply_ex(self.ctx.ref(), self.tactic, goal.goal, p.params), self.ctx)
8531 return ApplyResult(Z3_tactic_apply(self.ctx.ref(), self.tactic, goal.goal), self.ctx)
8533 def __call__(self, goal, *arguments, **keywords):
8534 """Apply tactic `self` to the given goal or Z3 Boolean expression using the given options.
8536 >>> x, y = Ints('x y')
8537 >>> t = Tactic('solve-eqs')
8538 >>> t(And(x == 0, y >= x + 1))
8541 return self.apply(goal, *arguments, **keywords)
8544 """Display a string containing a description of the available options for the `self` tactic."""
8545 print(Z3_tactic_get_help(self.ctx.ref(), self.tactic))
8547 def param_descrs(self):
8548 """Return the parameter description set."""
8549 return ParamDescrsRef(Z3_tactic_get_param_descrs(self.ctx.ref(), self.tactic), self.ctx)
8553 if isinstance(a, BoolRef):
8554 goal = Goal(ctx=a.ctx)
8561def _to_tactic(t, ctx=None):
8562 if isinstance(t, Tactic):
8565 return Tactic(t, ctx)
8568def _and_then(t1, t2, ctx=None):
8569 t1 = _to_tactic(t1, ctx)
8570 t2 = _to_tactic(t2, ctx)
8572 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8573 return Tactic(Z3_tactic_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8576def _or_else(t1, t2, ctx=None):
8577 t1 = _to_tactic(t1, ctx)
8578 t2 = _to_tactic(t2, ctx)
8580 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8581 return Tactic(Z3_tactic_or_else(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8584def AndThen(*ts, **ks):
8585 """Return a tactic that applies the tactics in `*ts` in sequence.
8587 >>> x, y = Ints('x y')
8588 >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
8589 >>> t(And(x == 0, y > x + 1))
8591 >>> t(And(x == 0, y > x + 1)).as_expr()
8595 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8596 ctx = ks.get("ctx", None)
8599 for i in range(num - 1):
8600 r = _and_then(r, ts[i + 1], ctx)
8605 """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).
8607 >>> x, y = Ints('x y')
8608 >>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
8609 >>> t(And(x == 0, y > x + 1))
8611 >>> t(And(x == 0, y > x + 1)).as_expr()
8614 return AndThen(*ts, **ks)
8617def OrElse(*ts, **ks):
8618 """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).
8621 >>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
8622 >>> # Tactic split-clause fails if there is no clause in the given goal.
8625 >>> t(Or(x == 0, x == 1))
8626 [[x == 0], [x == 1]]
8629 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8630 ctx = ks.get("ctx", None)
8633 for i in range(num - 1):
8634 r = _or_else(r, ts[i + 1], ctx)
8638def ParOr(*ts, **ks):
8639 """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).
8642 >>> t = ParOr(Tactic('simplify'), Tactic('fail'))
8647 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8648 ctx = _get_ctx(ks.get("ctx", None))
8649 ts = [_to_tactic(t, ctx) for t in ts]
8651 _args = (TacticObj * sz)()
8653 _args[i] = ts[i].tactic
8654 return Tactic(Z3_tactic_par_or(ctx.ref(), sz, _args), ctx)
8657def ParThen(t1, t2, ctx=None):
8658 """Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
8659 The subgoals are processed in parallel.
8661 >>> x, y = Ints('x y')
8662 >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
8663 >>> t(And(Or(x == 1, x == 2), y == x + 1))
8664 [[x == 1, y == 2], [x == 2, y == 3]]
8666 t1 = _to_tactic(t1, ctx)
8667 t2 = _to_tactic(t2, ctx)
8669 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8670 return Tactic(Z3_tactic_par_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8673def ParAndThen(t1, t2, ctx=None):
8674 """Alias for ParThen(t1, t2, ctx)."""
8675 return ParThen(t1, t2, ctx)
8678def With(t, *args, **keys):
8679 """Return a tactic that applies tactic `t` using the given configuration options.
8681 >>> x, y = Ints('x y')
8682 >>> t = With(Tactic('simplify'), som=True)
8683 >>> t((x + 1)*(y + 2) == 0)
8684 [[2*x + y + x*y == -2]]
8686 ctx = keys.pop("ctx", None)
8687 t = _to_tactic(t, ctx)
8688 p = args2params(args, keys, t.ctx)
8689 return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8692def WithParams(t, p):
8693 """Return a tactic that applies tactic `t` using the given configuration options.
8695 >>> x, y = Ints('x y')
8697 >>> p.set("som", True)
8698 >>> t = WithParams(Tactic('simplify'), p)
8699 >>> t((x + 1)*(y + 2) == 0)
8700 [[2*x + y + x*y == -2]]
8702 t = _to_tactic(t, None)
8703 return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8706def Repeat(t, max=4294967295, ctx=None):
8707 """Return a tactic that keeps applying `t` until the goal is not modified anymore
8708 or the maximum number of iterations `max` is reached.
8710 >>> x, y = Ints('x y')
8711 >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
8712 >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
8714 >>> for subgoal in r: print(subgoal)
8715 [x == 0, y == 0, x > y]
8716 [x == 0, y == 1, x > y]
8717 [x == 1, y == 0, x > y]
8718 [x == 1, y == 1, x > y]
8719 >>> t = Then(t, Tactic('propagate-values'))
8723 t = _to_tactic(t, ctx)
8724 return Tactic(Z3_tactic_repeat(t.ctx.ref(), t.tactic, max), t.ctx)
8727def TryFor(t, ms, ctx=None):
8728 """Return a tactic that applies `t` to a given goal for `ms` milliseconds.
8730 If `t` does not terminate in `ms` milliseconds, then it fails.
8732 t = _to_tactic(t, ctx)
8733 return Tactic(Z3_tactic_try_for(t.ctx.ref(), t.tactic, ms), t.ctx)
8736def tactics(ctx=None):
8737 """Return a list of all available tactics in Z3.
8740 >>> l.count('simplify') == 1
8744 return [Z3_get_tactic_name(ctx.ref(), i) for i in range(Z3_get_num_tactics(ctx.ref()))]
8747def tactic_description(name, ctx=None):
8748 """Return a short description for the tactic named `name`.
8750 >>> d = tactic_description('simplify')
8753 return Z3_tactic_get_descr(ctx.ref(), name)
8756def describe_tactics():
8757 """Display a (tabular) description of all available tactics in Z3."""
8760 print('<table border="1" cellpadding="2" cellspacing="0">')
8763 print('<tr style="background-color:#CFCFCF">')
8768 print("<td>%s</td><td>%s</td></tr>" % (t, insert_line_breaks(tactic_description(t), 40)))
8772 print("%s : %s" % (t, tactic_description(t)))
8776 """Probes are used to inspect a goal (aka problem) and collect information that may be used
8777 to decide which solver and/or preprocessing step will be used.
8780 def __init__(self, probe, ctx=None):
8781 self.ctx = _get_ctx(ctx)
8783 if isinstance(probe, ProbeObj):
8785 elif isinstance(probe, float):
8786 self.probe = Z3_probe_const(self.ctx.ref(), probe)
8787 elif _is_int(probe):
8788 self.probe = Z3_probe_const(self.ctx.ref(), float(probe))
8789 elif isinstance(probe, bool):
8791 self.probe = Z3_probe_const(self.ctx.ref(), 1.0)
8793 self.probe = Z3_probe_const(self.ctx.ref(), 0.0)
8796 _z3_assert(isinstance(probe, str), "probe name expected")
8798 self.probe = Z3_mk_probe(self.ctx.ref(), probe)
8800 raise Z3Exception("unknown probe '%s'" % probe)
8801 Z3_probe_inc_ref(self.ctx.ref(), self.probe)
8803 def __deepcopy__(self, memo={}):
8804 return Probe(self.probe, self.ctx)
8807 if self.probe is not None and self.ctx.ref() is not None and Z3_probe_dec_ref is not None:
8808 Z3_probe_dec_ref(self.ctx.ref(), self.probe)
8810 def __lt__(self, other):
8811 """Return a probe that evaluates to "true" when the value returned by `self`
8812 is less than the value returned by `other`.
8814 >>> p = Probe('size') < 10
8822 return Probe(Z3_probe_lt(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8824 def __gt__(self, other):
8825 """Return a probe that evaluates to "true" when the value returned by `self`
8826 is greater than the value returned by `other`.
8828 >>> p = Probe('size') > 10
8836 return Probe(Z3_probe_gt(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8838 def __le__(self, other):
8839 """Return a probe that evaluates to "true" when the value returned by `self`
8840 is less than or equal to the value returned by `other`.
8842 >>> p = Probe('size') <= 2
8850 return Probe(Z3_probe_le(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8852 def __ge__(self, other):
8853 """Return a probe that evaluates to "true" when the value returned by `self`
8854 is greater than or equal to the value returned by `other`.
8856 >>> p = Probe('size') >= 2
8864 return Probe(Z3_probe_ge(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8866 def __eq__(self, other):
8867 """Return a probe that evaluates to "true" when the value returned by `self`
8868 is equal to the value returned by `other`.
8870 >>> p = Probe('size') == 2
8878 return Probe(Z3_probe_eq(self.ctx.ref(), self.probe, _to_probe(other, self.ctx).probe), self.ctx)
8880 def __ne__(self, other):
8881 """Return a probe that evaluates to "true" when the value returned by `self`
8882 is not equal to the value returned by `other`.
8884 >>> p = Probe('size') != 2
8892 p = self.__eq__(other)
8893 return Probe(Z3_probe_not(self.ctx.ref(), p.probe), self.ctx)
8895 def __call__(self, goal):
8896 """Evaluate the probe `self` in the given goal.
8898 >>> p = Probe('size')
8908 >>> p = Probe('num-consts')
8911 >>> p = Probe('is-propositional')
8914 >>> p = Probe('is-qflia')
8919 _z3_assert(isinstance(goal, (Goal, BoolRef)), "Z3 Goal or Boolean expression expected")
8920 goal = _to_goal(goal)
8921 return Z3_probe_apply(self.ctx.ref(), self.probe, goal.goal)
8925 """Return `True` if `p` is a Z3 probe.
8927 >>> is_probe(Int('x'))
8929 >>> is_probe(Probe('memory'))
8932 return isinstance(p, Probe)
8935def _to_probe(p, ctx=None):
8939 return Probe(p, ctx)
8942def probes(ctx=None):
8943 """Return a list of all available probes in Z3.
8946 >>> l.count('memory') == 1
8950 return [Z3_get_probe_name(ctx.ref(), i) for i in range(Z3_get_num_probes(ctx.ref()))]
8953def probe_description(name, ctx=None):
8954 """Return a short description for the probe named `name`.
8956 >>> d = probe_description('memory')
8959 return Z3_probe_get_descr(ctx.ref(), name)
8962def describe_probes():
8963 """Display a (tabular) description of all available probes in Z3."""
8966 print('<table border="1" cellpadding="2" cellspacing="0">')
8969 print('<tr style="background-color:#CFCFCF">')
8974 print("<td>%s</td><td>%s</td></tr>" % (p, insert_line_breaks(probe_description(p), 40)))
8978 print("%s : %s" % (p, probe_description(p)))
8981def _probe_nary(f, args, ctx):
8983 _z3_assert(len(args) > 0, "At least one argument expected")
8985 r = _to_probe(args[0], ctx)
8986 for i in range(num - 1):
8987 r = Probe(f(ctx.ref(), r.probe, _to_probe(args[i + 1], ctx).probe), ctx)
8991def _probe_and(args, ctx):
8992 return _probe_nary(Z3_probe_and, args, ctx)
8995def _probe_or(args, ctx):
8996 return _probe_nary(Z3_probe_or, args, ctx)
8999def FailIf(p, ctx=None):
9000 """Return a tactic that fails if the probe `p` evaluates to true.
9001 Otherwise, it returns the input goal unmodified.
9003 In the following example, the tactic applies 'simplify' if and only if there are
9004 more than 2 constraints in the goal.
9006 >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
9007 >>> x, y = Ints('x y')
9013 >>> g.add(x == y + 1)
9015 [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
9017 p = _to_probe(p, ctx)
9018 return Tactic(Z3_tactic_fail_if(p.ctx.ref(), p.probe), p.ctx)
9021def When(p, t, ctx=None):
9022 """Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
9023 Otherwise, it returns the input goal unmodified.
9025 >>> t = When(Probe('size') > 2, Tactic('simplify'))
9026 >>> x, y = Ints('x y')
9032 >>> g.add(x == y + 1)
9034 [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
9036 p = _to_probe(p, ctx)
9037 t = _to_tactic(t, ctx)
9038 return Tactic(Z3_tactic_when(t.ctx.ref(), p.probe, t.tactic), t.ctx)
9041def Cond(p, t1, t2, ctx=None):
9042 """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.
9044 >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
9046 p = _to_probe(p, ctx)
9047 t1 = _to_tactic(t1, ctx)
9048 t2 = _to_tactic(t2, ctx)
9049 return Tactic(Z3_tactic_cond(t1.ctx.ref(), p.probe, t1.tactic, t2.tactic), t1.ctx)
9051#########################################
9055#########################################
9058def simplify(a, *arguments, **keywords):
9059 """Simplify the expression `a` using the given options.
9061 This function has many options. Use `help_simplify` to obtain the complete list.
9065 >>> simplify(x + 1 + y + x + 1)
9067 >>> simplify((x + 1)*(y + 1), som=True)
9069 >>> simplify(Distinct(x, y, 1), blast_distinct=True)
9070 And(Not(x == y), Not(x == 1), Not(y == 1))
9071 >>> simplify(And(x == 0, y == 1), elim_and=True)
9072 Not(Or(Not(x == 0), Not(y == 1)))
9075 _z3_assert(is_expr(a), "Z3 expression expected")
9076 if len(arguments) > 0 or len(keywords) > 0:
9077 p = args2params(arguments, keywords, a.ctx)
9078 return _to_expr_ref(Z3_simplify_ex(a.ctx_ref(), a.as_ast(), p.params), a.ctx)
9080 return _to_expr_ref(Z3_simplify(a.ctx_ref(), a.as_ast()), a.ctx)
9084 """Return a string describing all options available for Z3 `simplify` procedure."""
9085 print(Z3_simplify_get_help(main_ctx().ref()))
9088def simplify_param_descrs():
9089 """Return the set of parameter descriptions for Z3 `simplify` procedure."""
9090 return ParamDescrsRef(Z3_simplify_get_param_descrs(main_ctx().ref()), main_ctx())
9093def substitute(t, *m):
9094 """Apply substitution m on t, m is a list of pairs of the form (from, to).
9095 Every occurrence in t of from is replaced with to.
9099 >>> substitute(x + 1, (x, y + 1))
9101 >>> f = Function('f', IntSort(), IntSort())
9102 >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
9105 if isinstance(m, tuple):
9107 if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
9110 _z3_assert(is_expr(t), "Z3 expression expected")
9112 all([isinstance(p, tuple) and is_expr(p[0]) and is_expr(p[1]) for p in m]),
9113 "Z3 invalid substitution, expression pairs expected.")
9115 all([p[0].sort().eq(p[1].sort()) for p in m]),
9116 'Z3 invalid substitution, mismatching "from" and "to" sorts.')
9118 _from = (Ast * num)()
9120 for i in range(num):
9121 _from[i] = m[i][0].as_ast()
9122 _to[i] = m[i][1].as_ast()
9123 return _to_expr_ref(Z3_substitute(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
9126def substitute_vars(t, *m):
9127 """Substitute the free variables in t with the expression in m.
9129 >>> v0 = Var(0, IntSort())
9130 >>> v1 = Var(1, IntSort())
9132 >>> f = Function('f', IntSort(), IntSort(), IntSort())
9133 >>> # replace v0 with x+1 and v1 with x
9134 >>> substitute_vars(f(v0, v1), x + 1, x)
9138 _z3_assert(is_expr(t), "Z3 expression expected")
9139 _z3_assert(all([is_expr(n) for n in m]), "Z3 invalid substitution, list of expressions expected.")
9142 for i in range(num):
9143 _to[i] = m[i].as_ast()
9144 return _to_expr_ref(Z3_substitute_vars(t.ctx.ref(), t.as_ast(), num, _to), t.ctx)
9146def substitute_funs(t, *m):
9147 """Apply substitution m on t, m is a list of pairs of a function and expression (from, to)
9148 Every occurrence in to of the function from is replaced with the expression to.
9149 The expression to can have free variables, that refer to the arguments of from.
9152 if isinstance(m, tuple):
9154 if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
9157 _z3_assert(is_expr(t), "Z3 expression expected")
9158 _z3_assert(all([isinstance(p, tuple) and is_func_decl(p[0]) and is_expr(p[1]) for p in m]), "Z3 invalid substitution, function pairs expected.")
9160 _from = (FuncDecl * num)()
9162 for i in range(num):
9163 _from[i] = m[i][0].as_func_decl()
9164 _to[i] = m[i][1].as_ast()
9165 return _to_expr_ref(Z3_substitute_funs(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
9169 """Create the sum of the Z3 expressions.
9171 >>> a, b, c = Ints('a b c')
9176 >>> A = IntVector('a', 5)
9178 a__0 + a__1 + a__2 + a__3 + a__4
9180 args = _get_args(args)
9183 ctx = _ctx_from_ast_arg_list(args)
9185 return _reduce(lambda a, b: a + b, args, 0)
9186 args = _coerce_expr_list(args, ctx)
9188 return _reduce(lambda a, b: a + b, args, 0)
9190 _args, sz = _to_ast_array(args)
9191 return ArithRef(Z3_mk_add(ctx.ref(), sz, _args), ctx)
9195 """Create the product of the Z3 expressions.
9197 >>> a, b, c = Ints('a b c')
9198 >>> Product(a, b, c)
9200 >>> Product([a, b, c])
9202 >>> A = IntVector('a', 5)
9204 a__0*a__1*a__2*a__3*a__4
9206 args = _get_args(args)
9209 ctx = _ctx_from_ast_arg_list(args)
9211 return _reduce(lambda a, b: a * b, args, 1)
9212 args = _coerce_expr_list(args, ctx)
9214 return _reduce(lambda a, b: a * b, args, 1)
9216 _args, sz = _to_ast_array(args)
9217 return ArithRef(Z3_mk_mul(ctx.ref(), sz, _args), ctx)
9220 """Create the absolute value of an arithmetic expression"""
9221 return If(arg > 0, arg, -arg)
9225 """Create an at-most Pseudo-Boolean k constraint.
9227 >>> a, b, c = Bools('a b c')
9228 >>> f = AtMost(a, b, c, 2)
9230 args = _get_args(args)
9232 _z3_assert(len(args) > 1, "Non empty list of arguments expected")
9233 ctx = _ctx_from_ast_arg_list(args)
9235 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9236 args1 = _coerce_expr_list(args[:-1], ctx)
9238 _args, sz = _to_ast_array(args1)
9239 return BoolRef(Z3_mk_atmost(ctx.ref(), sz, _args, k), ctx)
9243 """Create an at-least Pseudo-Boolean k constraint.
9245 >>> a, b, c = Bools('a b c')
9246 >>> f = AtLeast(a, b, c, 2)
9248 args = _get_args(args)
9250 _z3_assert(len(args) > 1, "Non empty list of arguments expected")
9251 ctx = _ctx_from_ast_arg_list(args)
9253 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9254 args1 = _coerce_expr_list(args[:-1], ctx)
9256 _args, sz = _to_ast_array(args1)
9257 return BoolRef(Z3_mk_atleast(ctx.ref(), sz, _args, k), ctx)
9260def _reorder_pb_arg(arg):
9262 if not _is_int(b) and _is_int(a):
9267def _pb_args_coeffs(args, default_ctx=None):
9268 args = _get_args_ast_list(args)
9270 return _get_ctx(default_ctx), 0, (Ast * 0)(), (ctypes.c_int * 0)()
9271 args = [_reorder_pb_arg(arg) for arg in args]
9272 args, coeffs = zip(*args)
9274 _z3_assert(len(args) > 0, "Non empty list of arguments expected")
9275 ctx = _ctx_from_ast_arg_list(args)
9277 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
9278 args = _coerce_expr_list(args, ctx)
9279 _args, sz = _to_ast_array(args)
9280 _coeffs = (ctypes.c_int * len(coeffs))()
9281 for i in range(len(coeffs)):
9282 _z3_check_cint_overflow(coeffs[i], "coefficient")
9283 _coeffs[i] = coeffs[i]
9284 return ctx, sz, _args, _coeffs, args
9288 """Create a Pseudo-Boolean inequality k constraint.
9290 >>> a, b, c = Bools('a b c')
9291 >>> f = PbLe(((a,1),(b,3),(c,2)), 3)
9293 _z3_check_cint_overflow(k, "k")
9294 ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9295 return BoolRef(Z3_mk_pble(ctx.ref(), sz, _args, _coeffs, k), ctx)
9299 """Create a Pseudo-Boolean inequality k constraint.
9301 >>> a, b, c = Bools('a b c')
9302 >>> f = PbGe(((a,1),(b,3),(c,2)), 3)
9304 _z3_check_cint_overflow(k, "k")
9305 ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9306 return BoolRef(Z3_mk_pbge(ctx.ref(), sz, _args, _coeffs, k), ctx)
9309def PbEq(args, k, ctx=None):
9310 """Create a Pseudo-Boolean equality k constraint.
9312 >>> a, b, c = Bools('a b c')
9313 >>> f = PbEq(((a,1),(b,3),(c,2)), 3)
9315 _z3_check_cint_overflow(k, "k")
9316 ctx, sz, _args, _coeffs, args = _pb_args_coeffs(args)
9317 return BoolRef(Z3_mk_pbeq(ctx.ref(), sz, _args, _coeffs, k), ctx)
9320def solve(*args, **keywords):
9321 """Solve the constraints `*args`.
9323 This is a simple function for creating demonstrations. It creates a solver,
9324 configure it using the options in `keywords`, adds the constraints
9325 in `args`, and invokes check.
9328 >>> solve(a > 0, a < 2)
9331 show = keywords.pop("show", False)
9339 print("no solution")
9341 print("failed to solve")
9350def solve_using(s, *args, **keywords):
9351 """Solve the constraints `*args` using solver `s`.
9353 This is a simple function for creating demonstrations. It is similar to `solve`,
9354 but it uses the given solver `s`.
9355 It configures solver `s` using the options in `keywords`, adds the constraints
9356 in `args`, and invokes check.
9358 show = keywords.pop("show", False)
9360 _z3_assert(isinstance(s, Solver), "Solver object expected")
9368 print("no solution")
9370 print("failed to solve")
9381def prove(claim, show=False, **keywords):
9382 """Try to prove the given claim.
9384 This is a simple function for creating demonstrations. It tries to prove
9385 `claim` by showing the negation is unsatisfiable.
9387 >>> p, q = Bools('p q')
9388 >>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
9392 _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
9402 print("failed to prove")
9405 print("counterexample")
9409def _solve_html(*args, **keywords):
9410 """Version of function `solve` that renders HTML output."""
9411 show = keywords.pop("show", False)
9416 print("<b>Problem:</b>")
9420 print("<b>no solution</b>")
9422 print("<b>failed to solve</b>")
9429 print("<b>Solution:</b>")
9433def _solve_using_html(s, *args, **keywords):
9434 """Version of function `solve_using` that renders HTML."""
9435 show = keywords.pop("show", False)
9437 _z3_assert(isinstance(s, Solver), "Solver object expected")
9441 print("<b>Problem:</b>")
9445 print("<b>no solution</b>")
9447 print("<b>failed to solve</b>")
9454 print("<b>Solution:</b>")
9458def _prove_html(claim, show=False, **keywords):
9459 """Version of function `prove` that renders HTML."""
9461 _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
9469 print("<b>proved</b>")
9471 print("<b>failed to prove</b>")
9474 print("<b>counterexample</b>")
9478def _dict2sarray(sorts, ctx):
9480 _names = (Symbol * sz)()
9481 _sorts = (Sort * sz)()
9486 _z3_assert(isinstance(k, str), "String expected")
9487 _z3_assert(is_sort(v), "Z3 sort expected")
9488 _names[i] = to_symbol(k, ctx)
9491 return sz, _names, _sorts
9494def _dict2darray(decls, ctx):
9496 _names = (Symbol * sz)()
9497 _decls = (FuncDecl * sz)()
9502 _z3_assert(isinstance(k, str), "String expected")
9503 _z3_assert(is_func_decl(v) or is_const(v), "Z3 declaration or constant expected")
9504 _names[i] = to_symbol(k, ctx)
9506 _decls[i] = v.decl().ast
9510 return sz, _names, _decls
9513 def __init__(self, ctx= None):
9514 self.ctx = _get_ctx(ctx)
9515 self.pctx = Z3_mk_parser_context(self.ctx.ref())
9516 Z3_parser_context_inc_ref(self.ctx.ref(), self.pctx)
9519 if self.ctx.ref() is not None and self.pctx is not None and Z3_parser_context_dec_ref is not None:
9520 Z3_parser_context_dec_ref(self.ctx.ref(), self.pctx)
9523 def add_sort(self, sort):
9524 Z3_parser_context_add_sort(self.ctx.ref(), self.pctx, sort.as_ast())
9526 def add_decl(self, decl):
9527 Z3_parser_context_add_decl(self.ctx.ref(), self.pctx, decl.as_ast())
9529 def from_string(self, s):
9530 return AstVector(Z3_parser_context_from_string(self.ctx.ref(), self.pctx, s), self.ctx)
9532def parse_smt2_string(s, sorts={}, decls={}, ctx=None):
9533 """Parse a string in SMT 2.0 format using the given sorts and decls.
9535 The arguments sorts and decls are Python dictionaries used to initialize
9536 the symbol table used for the SMT 2.0 parser.
9538 >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
9540 >>> x, y = Ints('x y')
9541 >>> f = Function('f', IntSort(), IntSort())
9542 >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
9544 >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
9548 ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9549 dsz, dnames, ddecls = _dict2darray(decls, ctx)
9550 return AstVector(Z3_parse_smtlib2_string(ctx.ref(), s, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9553def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
9554 """Parse a file in SMT 2.0 format using the given sorts and decls.
9556 This function is similar to parse_smt2_string().
9559 ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9560 dsz, dnames, ddecls = _dict2darray(decls, ctx)
9561 return AstVector(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9564#########################################
9566# Floating-Point Arithmetic
9568#########################################
9571# Global default rounding mode
9572_dflt_rounding_mode = Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN
9573_dflt_fpsort_ebits = 11
9574_dflt_fpsort_sbits = 53
9577def get_default_rounding_mode(ctx=None):
9578 """Retrieves the global default rounding mode."""
9579 global _dflt_rounding_mode
9580 if _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:
9582 elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:
9584 elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:
9586 elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:
9588 elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:
9592_ROUNDING_MODES = frozenset({
9593 Z3_OP_FPA_RM_TOWARD_ZERO,
9594 Z3_OP_FPA_RM_TOWARD_NEGATIVE,
9595 Z3_OP_FPA_RM_TOWARD_POSITIVE,
9596 Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
9597 Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY
9601def set_default_rounding_mode(rm, ctx=None):
9602 global _dflt_rounding_mode
9603 if is_fprm_value(rm):
9604 _dflt_rounding_mode = rm.kind()
9606 _z3_assert(_dflt_rounding_mode in _ROUNDING_MODES, "illegal rounding mode")
9607 _dflt_rounding_mode = rm
9610def get_default_fp_sort(ctx=None):
9611 return FPSort(_dflt_fpsort_ebits, _dflt_fpsort_sbits, ctx)
9614def set_default_fp_sort(ebits, sbits, ctx=None):
9615 global _dflt_fpsort_ebits
9616 global _dflt_fpsort_sbits
9617 _dflt_fpsort_ebits = ebits
9618 _dflt_fpsort_sbits = sbits
9621def _dflt_rm(ctx=None):
9622 return get_default_rounding_mode(ctx)
9625def _dflt_fps(ctx=None):
9626 return get_default_fp_sort(ctx)
9629def _coerce_fp_expr_list(alist, ctx):
9630 first_fp_sort = None
9633 if first_fp_sort is None:
9634 first_fp_sort = a.sort()
9635 elif first_fp_sort == a.sort():
9636 pass # OK, same as before
9638 # we saw at least 2 different float sorts; something will
9639 # throw a sort mismatch later, for now assume None.
9640 first_fp_sort = None
9644 for i in range(len(alist)):
9646 is_repr = isinstance(a, str) and a.contains("2**(") and a.endswith(")")
9647 if is_repr or _is_int(a) or isinstance(a, (float, bool)):
9648 r.append(FPVal(a, None, first_fp_sort, ctx))
9651 return _coerce_expr_list(r, ctx)
9656class FPSortRef(SortRef):
9657 """Floating-point sort."""
9660 """Retrieves the number of bits reserved for the exponent in the FloatingPoint sort `self`.
9661 >>> b = FPSort(8, 24)
9665 return int(Z3_fpa_get_ebits(self.ctx_ref(), self.ast))
9668 """Retrieves the number of bits reserved for the significand in the FloatingPoint sort `self`.
9669 >>> b = FPSort(8, 24)
9673 return int(Z3_fpa_get_sbits(self.ctx_ref(), self.ast))
9675 def cast(self, val):
9676 """Try to cast `val` as a floating-point expression.
9677 >>> b = FPSort(8, 24)
9680 >>> b.cast(1.0).sexpr()
9681 '(fp #b0 #x7f #b00000000000000000000000)'
9685 _z3_assert(self.ctx == val.ctx, "Context mismatch")
9688 return FPVal(val, None, self, self.ctx)
9691def Float16(ctx=None):
9692 """Floating-point 16-bit (half) sort."""
9694 return FPSortRef(Z3_mk_fpa_sort_16(ctx.ref()), ctx)
9697def FloatHalf(ctx=None):
9698 """Floating-point 16-bit (half) sort."""
9700 return FPSortRef(Z3_mk_fpa_sort_half(ctx.ref()), ctx)
9703def Float32(ctx=None):
9704 """Floating-point 32-bit (single) sort."""
9706 return FPSortRef(Z3_mk_fpa_sort_32(ctx.ref()), ctx)
9709def FloatSingle(ctx=None):
9710 """Floating-point 32-bit (single) sort."""
9712 return FPSortRef(Z3_mk_fpa_sort_single(ctx.ref()), ctx)
9715def Float64(ctx=None):
9716 """Floating-point 64-bit (double) sort."""
9718 return FPSortRef(Z3_mk_fpa_sort_64(ctx.ref()), ctx)
9721def FloatDouble(ctx=None):
9722 """Floating-point 64-bit (double) sort."""
9724 return FPSortRef(Z3_mk_fpa_sort_double(ctx.ref()), ctx)
9727def Float128(ctx=None):
9728 """Floating-point 128-bit (quadruple) sort."""
9730 return FPSortRef(Z3_mk_fpa_sort_128(ctx.ref()), ctx)
9733def FloatQuadruple(ctx=None):
9734 """Floating-point 128-bit (quadruple) sort."""
9736 return FPSortRef(Z3_mk_fpa_sort_quadruple(ctx.ref()), ctx)
9739class FPRMSortRef(SortRef):
9740 """"Floating-point rounding mode sort."""
9744 """Return True if `s` is a Z3 floating-point sort.
9746 >>> is_fp_sort(FPSort(8, 24))
9748 >>> is_fp_sort(IntSort())
9751 return isinstance(s, FPSortRef)
9755 """Return True if `s` is a Z3 floating-point rounding mode sort.
9757 >>> is_fprm_sort(FPSort(8, 24))
9759 >>> is_fprm_sort(RNE().sort())
9762 return isinstance(s, FPRMSortRef)
9767class FPRef(ExprRef):
9768 """Floating-point expressions."""
9771 """Return the sort of the floating-point expression `self`.
9773 >>> x = FP('1.0', FPSort(8, 24))
9776 >>> x.sort() == FPSort(8, 24)
9779 return FPSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
9782 """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`.
9783 >>> b = FPSort(8, 24)
9787 return self.sort().ebits()
9790 """Retrieves the number of bits reserved for the exponent in the FloatingPoint expression `self`.
9791 >>> b = FPSort(8, 24)
9795 return self.sort().sbits()
9797 def as_string(self):
9798 """Return a Z3 floating point expression as a Python string."""
9799 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
9801 def __le__(self, other):
9802 return fpLEQ(self, other, self.ctx)
9804 def __lt__(self, other):
9805 return fpLT(self, other, self.ctx)
9807 def __ge__(self, other):
9808 return fpGEQ(self, other, self.ctx)
9810 def __gt__(self, other):
9811 return fpGT(self, other, self.ctx)
9813 def __add__(self, other):
9814 """Create the Z3 expression `self + other`.
9816 >>> x = FP('x', FPSort(8, 24))
9817 >>> y = FP('y', FPSort(8, 24))
9823 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9824 return fpAdd(_dflt_rm(), a, b, self.ctx)
9826 def __radd__(self, other):
9827 """Create the Z3 expression `other + self`.
9829 >>> x = FP('x', FPSort(8, 24))
9833 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9834 return fpAdd(_dflt_rm(), a, b, self.ctx)
9836 def __sub__(self, other):
9837 """Create the Z3 expression `self - other`.
9839 >>> x = FP('x', FPSort(8, 24))
9840 >>> y = FP('y', FPSort(8, 24))
9846 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9847 return fpSub(_dflt_rm(), a, b, self.ctx)
9849 def __rsub__(self, other):
9850 """Create the Z3 expression `other - self`.
9852 >>> x = FP('x', FPSort(8, 24))
9856 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9857 return fpSub(_dflt_rm(), a, b, self.ctx)
9859 def __mul__(self, other):
9860 """Create the Z3 expression `self * other`.
9862 >>> x = FP('x', FPSort(8, 24))
9863 >>> y = FP('y', FPSort(8, 24))
9871 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9872 return fpMul(_dflt_rm(), a, b, self.ctx)
9874 def __rmul__(self, other):
9875 """Create the Z3 expression `other * self`.
9877 >>> x = FP('x', FPSort(8, 24))
9878 >>> y = FP('y', FPSort(8, 24))
9884 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9885 return fpMul(_dflt_rm(), a, b, self.ctx)
9888 """Create the Z3 expression `+self`."""
9892 """Create the Z3 expression `-self`.
9894 >>> x = FP('x', Float32())
9900 def __div__(self, other):
9901 """Create the Z3 expression `self / other`.
9903 >>> x = FP('x', FPSort(8, 24))
9904 >>> y = FP('y', FPSort(8, 24))
9912 [a, b] = _coerce_fp_expr_list([self, other], self.ctx)
9913 return fpDiv(_dflt_rm(), a, b, self.ctx)
9915 def __rdiv__(self, other):
9916 """Create the Z3 expression `other / self`.
9918 >>> x = FP('x', FPSort(8, 24))
9919 >>> y = FP('y', FPSort(8, 24))
9925 [a, b] = _coerce_fp_expr_list([other, self], self.ctx)
9926 return fpDiv(_dflt_rm(), a, b, self.ctx)
9928 def __truediv__(self, other):
9929 """Create the Z3 expression division `self / other`."""
9930 return self.__div__(other)
9932 def __rtruediv__(self, other):
9933 """Create the Z3 expression division `other / self`."""
9934 return self.__rdiv__(other)
9936 def __mod__(self, other):
9937 """Create the Z3 expression mod `self % other`."""
9938 return fpRem(self, other)
9940 def __rmod__(self, other):
9941 """Create the Z3 expression mod `other % self`."""
9942 return fpRem(other, self)
9945class FPRMRef(ExprRef):
9946 """Floating-point rounding mode expressions"""
9948 def as_string(self):
9949 """Return a Z3 floating point expression as a Python string."""
9950 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
9953def RoundNearestTiesToEven(ctx=None):
9955 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
9960 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
9963def RoundNearestTiesToAway(ctx=None):
9965 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
9970 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
9973def RoundTowardPositive(ctx=None):
9975 return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
9980 return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
9983def RoundTowardNegative(ctx=None):
9985 return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
9990 return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
9993def RoundTowardZero(ctx=None):
9995 return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
10000 return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
10004 """Return `True` if `a` is a Z3 floating-point rounding mode expression.
10013 return isinstance(a, FPRMRef)
10016def is_fprm_value(a):
10017 """Return `True` if `a` is a Z3 floating-point rounding mode numeral value."""
10018 return is_fprm(a) and _is_numeral(a.ctx, a.ast)
10023class FPNumRef(FPRef):
10024 """The sign of the numeral.
10026 >>> x = FPVal(+1.0, FPSort(8, 24))
10029 >>> x = FPVal(-1.0, FPSort(8, 24))
10035 num = ctypes.c_bool()
10036 nsign = Z3_fpa_get_numeral_sign(self.ctx.ref(), self.as_ast(), byref(num))
10038 raise Z3Exception("error retrieving the sign of a numeral.")
10039 return num.value != 0
10041 """The sign of a floating-point numeral as a bit-vector expression.
10043 Remark: NaN's are invalid arguments.
10046 def sign_as_bv(self):
10047 return BitVecNumRef(Z3_fpa_get_numeral_sign_bv(self.ctx.ref(), self.as_ast()), self.ctx)
10049 """The significand of the numeral.
10051 >>> x = FPVal(2.5, FPSort(8, 24))
10052 >>> x.significand()
10056 def significand(self):
10057 return Z3_fpa_get_numeral_significand_string(self.ctx.ref(), self.as_ast())
10059 """The significand of the numeral as a long.
10061 >>> x = FPVal(2.5, FPSort(8, 24))
10062 >>> x.significand_as_long()
10066 def significand_as_long(self):
10067 ptr = (ctypes.c_ulonglong * 1)()
10068 if not Z3_fpa_get_numeral_significand_uint64(self.ctx.ref(), self.as_ast(), ptr):
10069 raise Z3Exception("error retrieving the significand of a numeral.")
10072 """The significand of the numeral as a bit-vector expression.
10074 Remark: NaN are invalid arguments.
10077 def significand_as_bv(self):
10078 return BitVecNumRef(Z3_fpa_get_numeral_significand_bv(self.ctx.ref(), self.as_ast()), self.ctx)
10080 """The exponent of the numeral.
10082 >>> x = FPVal(2.5, FPSort(8, 24))
10087 def exponent(self, biased=True):
10088 return Z3_fpa_get_numeral_exponent_string(self.ctx.ref(), self.as_ast(), biased)
10090 """The exponent of the numeral as a long.
10092 >>> x = FPVal(2.5, FPSort(8, 24))
10093 >>> x.exponent_as_long()
10097 def exponent_as_long(self, biased=True):
10098 ptr = (ctypes.c_longlong * 1)()
10099 if not Z3_fpa_get_numeral_exponent_int64(self.ctx.ref(), self.as_ast(), ptr, biased):
10100 raise Z3Exception("error retrieving the exponent of a numeral.")
10103 """The exponent of the numeral as a bit-vector expression.
10105 Remark: NaNs are invalid arguments.
10108 def exponent_as_bv(self, biased=True):
10109 return BitVecNumRef(Z3_fpa_get_numeral_exponent_bv(self.ctx.ref(), self.as_ast(), biased), self.ctx)
10111 """Indicates whether the numeral is a NaN."""
10114 return Z3_fpa_is_numeral_nan(self.ctx.ref(), self.as_ast())
10116 """Indicates whether the numeral is +oo or -oo."""
10119 return Z3_fpa_is_numeral_inf(self.ctx.ref(), self.as_ast())
10121 """Indicates whether the numeral is +zero or -zero."""
10124 return Z3_fpa_is_numeral_zero(self.ctx.ref(), self.as_ast())
10126 """Indicates whether the numeral is normal."""
10128 def isNormal(self):
10129 return Z3_fpa_is_numeral_normal(self.ctx.ref(), self.as_ast())
10131 """Indicates whether the numeral is subnormal."""
10133 def isSubnormal(self):
10134 return Z3_fpa_is_numeral_subnormal(self.ctx.ref(), self.as_ast())
10136 """Indicates whether the numeral is positive."""
10138 def isPositive(self):
10139 return Z3_fpa_is_numeral_positive(self.ctx.ref(), self.as_ast())
10141 """Indicates whether the numeral is negative."""
10143 def isNegative(self):
10144 return Z3_fpa_is_numeral_negative(self.ctx.ref(), self.as_ast())
10147 The string representation of the numeral.
10149 >>> x = FPVal(20, FPSort(8, 24))
10154 def as_string(self):
10155 s = Z3_get_numeral_string(self.ctx.ref(), self.as_ast())
10156 return ("FPVal(%s, %s)" % (s, self.sort()))
10158 def py_value(self):
10159 bv = simplify(fpToIEEEBV(self))
10160 binary = bv.py_value()
10161 if not isinstance(binary, int):
10163 # Decode the IEEE 754 binary representation
10165 bytes_rep = binary.to_bytes(8, byteorder='big')
10166 return struct.unpack('>d', bytes_rep)[0]
10170 """Return `True` if `a` is a Z3 floating-point expression.
10172 >>> b = FP('b', FPSort(8, 24))
10177 >>> is_fp(Int('x'))
10180 return isinstance(a, FPRef)
10184 """Return `True` if `a` is a Z3 floating-point numeral value.
10186 >>> b = FP('b', FPSort(8, 24))
10189 >>> b = FPVal(1.0, FPSort(8, 24))
10195 return is_fp(a) and _is_numeral(a.ctx, a.ast)
10198def FPSort(ebits, sbits, ctx=None):
10199 """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.
10201 >>> Single = FPSort(8, 24)
10202 >>> Double = FPSort(11, 53)
10205 >>> x = Const('x', Single)
10206 >>> eq(x, FP('x', FPSort(8, 24)))
10209 ctx = _get_ctx(ctx)
10210 return FPSortRef(Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
10213def _to_float_str(val, exp=0):
10214 if isinstance(val, float):
10215 if math.isnan(val):
10218 sone = math.copysign(1.0, val)
10223 elif val == float("+inf"):
10225 elif val == float("-inf"):
10228 v = val.as_integer_ratio()
10231 rvs = str(num) + "/" + str(den)
10232 res = rvs + "p" + _to_int_str(exp)
10233 elif isinstance(val, bool):
10240 elif isinstance(val, str):
10241 inx = val.find("*(2**")
10244 elif val[-1] == ")":
10246 exp = str(int(val[inx + 5:-1]) + int(exp))
10248 _z3_assert(False, "String does not have floating-point numeral form.")
10250 _z3_assert(False, "Python value cannot be used to create floating-point numerals.")
10254 return res + "p" + exp
10258 """Create a Z3 floating-point NaN term.
10260 >>> s = FPSort(8, 24)
10261 >>> set_fpa_pretty(True)
10264 >>> pb = get_fpa_pretty()
10265 >>> set_fpa_pretty(False)
10267 fpNaN(FPSort(8, 24))
10268 >>> set_fpa_pretty(pb)
10270 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10271 return FPNumRef(Z3_mk_fpa_nan(s.ctx_ref(), s.ast), s.ctx)
10274def fpPlusInfinity(s):
10275 """Create a Z3 floating-point +oo term.
10277 >>> s = FPSort(8, 24)
10278 >>> pb = get_fpa_pretty()
10279 >>> set_fpa_pretty(True)
10280 >>> fpPlusInfinity(s)
10282 >>> set_fpa_pretty(False)
10283 >>> fpPlusInfinity(s)
10284 fpPlusInfinity(FPSort(8, 24))
10285 >>> set_fpa_pretty(pb)
10287 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10288 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, False), s.ctx)
10291def fpMinusInfinity(s):
10292 """Create a Z3 floating-point -oo term."""
10293 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10294 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, True), s.ctx)
10297def fpInfinity(s, negative):
10298 """Create a Z3 floating-point +oo or -oo term."""
10299 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10300 _z3_assert(isinstance(negative, bool), "expected Boolean flag")
10301 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, negative), s.ctx)
10305 """Create a Z3 floating-point +0.0 term."""
10306 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10307 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, False), s.ctx)
10311 """Create a Z3 floating-point -0.0 term."""
10312 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10313 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, True), s.ctx)
10316def fpZero(s, negative):
10317 """Create a Z3 floating-point +0.0 or -0.0 term."""
10318 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
10319 _z3_assert(isinstance(negative, bool), "expected Boolean flag")
10320 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, negative), s.ctx)
10323def FPVal(sig, exp=None, fps=None, ctx=None):
10324 """Return a floating-point value of value `val` and sort `fps`.
10325 If `ctx=None`, then the global context is used.
10327 >>> v = FPVal(20.0, FPSort(8, 24))
10330 >>> print("0x%.8x" % v.exponent_as_long(False))
10332 >>> v = FPVal(2.25, FPSort(8, 24))
10335 >>> v = FPVal(-2.25, FPSort(8, 24))
10338 >>> FPVal(-0.0, FPSort(8, 24))
10340 >>> FPVal(0.0, FPSort(8, 24))
10342 >>> FPVal(+0.0, FPSort(8, 24))
10345 ctx = _get_ctx(ctx)
10346 if is_fp_sort(exp):
10350 fps = _dflt_fps(ctx)
10351 _z3_assert(is_fp_sort(fps), "sort mismatch")
10354 val = _to_float_str(sig)
10355 if val == "NaN" or val == "nan":
10357 elif val == "-0.0":
10358 return fpMinusZero(fps)
10359 elif val == "0.0" or val == "+0.0":
10360 return fpPlusZero(fps)
10361 elif val == "+oo" or val == "+inf" or val == "+Inf":
10362 return fpPlusInfinity(fps)
10363 elif val == "-oo" or val == "-inf" or val == "-Inf":
10364 return fpMinusInfinity(fps)
10366 return FPNumRef(Z3_mk_numeral(ctx.ref(), val, fps.ast), ctx)
10369def FP(name, fpsort, ctx=None):
10370 """Return a floating-point constant named `name`.
10371 `fpsort` is the floating-point sort.
10372 If `ctx=None`, then the global context is used.
10374 >>> x = FP('x', FPSort(8, 24))
10381 >>> word = FPSort(8, 24)
10382 >>> x2 = FP('x', word)
10386 if isinstance(fpsort, FPSortRef) and ctx is None:
10389 ctx = _get_ctx(ctx)
10390 return FPRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), fpsort.ast), ctx)
10393def FPs(names, fpsort, ctx=None):
10394 """Return an array of floating-point constants.
10396 >>> x, y, z = FPs('x y z', FPSort(8, 24))
10403 >>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
10406 ctx = _get_ctx(ctx)
10407 if isinstance(names, str):
10408 names = names.split(" ")
10409 return [FP(name, fpsort, ctx) for name in names]
10412def fpAbs(a, ctx=None):
10413 """Create a Z3 floating-point absolute value expression.
10415 >>> s = FPSort(8, 24)
10417 >>> x = FPVal(1.0, s)
10420 >>> y = FPVal(-20.0, s)
10424 fpAbs(-1.25*(2**4))
10425 >>> fpAbs(-1.25*(2**4))
10426 fpAbs(-1.25*(2**4))
10427 >>> fpAbs(x).sort()
10430 ctx = _get_ctx(ctx)
10431 [a] = _coerce_fp_expr_list([a], ctx)
10432 return FPRef(Z3_mk_fpa_abs(ctx.ref(), a.as_ast()), ctx)
10435def fpNeg(a, ctx=None):
10436 """Create a Z3 floating-point addition expression.
10438 >>> s = FPSort(8, 24)
10443 >>> fpNeg(x).sort()
10446 ctx = _get_ctx(ctx)
10447 [a] = _coerce_fp_expr_list([a], ctx)
10448 return FPRef(Z3_mk_fpa_neg(ctx.ref(), a.as_ast()), ctx)
10451def _mk_fp_unary(f, rm, a, ctx):
10452 ctx = _get_ctx(ctx)
10453 [a] = _coerce_fp_expr_list([a], ctx)
10455 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10456 _z3_assert(is_fp(a), "Second argument must be a Z3 floating-point expression")
10457 return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast()), ctx)
10460def _mk_fp_unary_pred(f, a, ctx):
10461 ctx = _get_ctx(ctx)
10462 [a] = _coerce_fp_expr_list([a], ctx)
10464 _z3_assert(is_fp(a), "First argument must be a Z3 floating-point expression")
10465 return BoolRef(f(ctx.ref(), a.as_ast()), ctx)
10468def _mk_fp_bin(f, rm, a, b, ctx):
10469 ctx = _get_ctx(ctx)
10470 [a, b] = _coerce_fp_expr_list([a, b], ctx)
10472 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10473 _z3_assert(is_fp(a) or is_fp(b), "Second or third argument must be a Z3 floating-point expression")
10474 return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast()), ctx)
10477def _mk_fp_bin_norm(f, a, b, ctx):
10478 ctx = _get_ctx(ctx)
10479 [a, b] = _coerce_fp_expr_list([a, b], ctx)
10481 _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
10482 return FPRef(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
10485def _mk_fp_bin_pred(f, a, b, ctx):
10486 ctx = _get_ctx(ctx)
10487 [a, b] = _coerce_fp_expr_list([a, b], ctx)
10489 _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
10490 return BoolRef(f(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
10493def _mk_fp_tern(f, rm, a, b, c, ctx):
10494 ctx = _get_ctx(ctx)
10495 [a, b, c] = _coerce_fp_expr_list([a, b, c], ctx)
10497 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10498 _z3_assert(is_fp(a) or is_fp(b) or is_fp(
10499 c), "Second, third or fourth argument must be a Z3 floating-point expression")
10500 return FPRef(f(ctx.ref(), rm.as_ast(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
10503def fpAdd(rm, a, b, ctx=None):
10504 """Create a Z3 floating-point addition expression.
10506 >>> s = FPSort(8, 24)
10510 >>> fpAdd(rm, x, y)
10512 >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
10514 >>> fpAdd(rm, x, y).sort()
10517 return _mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)
10520def fpSub(rm, a, b, ctx=None):
10521 """Create a Z3 floating-point subtraction expression.
10523 >>> s = FPSort(8, 24)
10527 >>> fpSub(rm, x, y)
10529 >>> fpSub(rm, x, y).sort()
10532 return _mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)
10535def fpMul(rm, a, b, ctx=None):
10536 """Create a Z3 floating-point multiplication expression.
10538 >>> s = FPSort(8, 24)
10542 >>> fpMul(rm, x, y)
10544 >>> fpMul(rm, x, y).sort()
10547 return _mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)
10550def fpDiv(rm, a, b, ctx=None):
10551 """Create a Z3 floating-point division expression.
10553 >>> s = FPSort(8, 24)
10557 >>> fpDiv(rm, x, y)
10559 >>> fpDiv(rm, x, y).sort()
10562 return _mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)
10565def fpRem(a, b, ctx=None):
10566 """Create a Z3 floating-point remainder expression.
10568 >>> s = FPSort(8, 24)
10573 >>> fpRem(x, y).sort()
10576 return _mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)
10579def fpMin(a, b, ctx=None):
10580 """Create a Z3 floating-point minimum expression.
10582 >>> s = FPSort(8, 24)
10588 >>> fpMin(x, y).sort()
10591 return _mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)
10594def fpMax(a, b, ctx=None):
10595 """Create a Z3 floating-point maximum expression.
10597 >>> s = FPSort(8, 24)
10603 >>> fpMax(x, y).sort()
10606 return _mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)
10609def fpFMA(rm, a, b, c, ctx=None):
10610 """Create a Z3 floating-point fused multiply-add expression.
10612 return _mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)
10615def fpSqrt(rm, a, ctx=None):
10616 """Create a Z3 floating-point square root expression.
10618 return _mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)
10621def fpRoundToIntegral(rm, a, ctx=None):
10622 """Create a Z3 floating-point roundToIntegral expression.
10624 return _mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)
10627def fpIsNaN(a, ctx=None):
10628 """Create a Z3 floating-point isNaN expression.
10630 >>> s = FPSort(8, 24)
10636 return _mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)
10639def fpIsInf(a, ctx=None):
10640 """Create a Z3 floating-point isInfinite expression.
10642 >>> s = FPSort(8, 24)
10647 return _mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)
10650def fpIsZero(a, ctx=None):
10651 """Create a Z3 floating-point isZero expression.
10653 return _mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)
10656def fpIsNormal(a, ctx=None):
10657 """Create a Z3 floating-point isNormal expression.
10659 return _mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)
10662def fpIsSubnormal(a, ctx=None):
10663 """Create a Z3 floating-point isSubnormal expression.
10665 return _mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)
10668def fpIsNegative(a, ctx=None):
10669 """Create a Z3 floating-point isNegative expression.
10671 return _mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)
10674def fpIsPositive(a, ctx=None):
10675 """Create a Z3 floating-point isPositive expression.
10677 return _mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)
10680def _check_fp_args(a, b):
10682 _z3_assert(is_fp(a) or is_fp(b), "First or second argument must be a Z3 floating-point expression")
10685def fpLT(a, b, ctx=None):
10686 """Create the Z3 floating-point expression `other < self`.
10688 >>> x, y = FPs('x y', FPSort(8, 24))
10691 >>> (x < y).sexpr()
10694 return _mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)
10697def fpLEQ(a, b, ctx=None):
10698 """Create the Z3 floating-point expression `other <= self`.
10700 >>> x, y = FPs('x y', FPSort(8, 24))
10703 >>> (x <= y).sexpr()
10706 return _mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)
10709def fpGT(a, b, ctx=None):
10710 """Create the Z3 floating-point expression `other > self`.
10712 >>> x, y = FPs('x y', FPSort(8, 24))
10715 >>> (x > y).sexpr()
10718 return _mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)
10721def fpGEQ(a, b, ctx=None):
10722 """Create the Z3 floating-point expression `other >= self`.
10724 >>> x, y = FPs('x y', FPSort(8, 24))
10727 >>> (x >= y).sexpr()
10730 return _mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)
10733def fpEQ(a, b, ctx=None):
10734 """Create the Z3 floating-point expression `fpEQ(other, self)`.
10736 >>> x, y = FPs('x y', FPSort(8, 24))
10739 >>> fpEQ(x, y).sexpr()
10742 return _mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)
10745def fpNEQ(a, b, ctx=None):
10746 """Create the Z3 floating-point expression `Not(fpEQ(other, self))`.
10748 >>> x, y = FPs('x y', FPSort(8, 24))
10751 >>> (x != y).sexpr()
10754 return Not(fpEQ(a, b, ctx))
10757def fpFP(sgn, exp, sig, ctx=None):
10758 """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.
10760 >>> s = FPSort(8, 24)
10761 >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
10763 fpFP(1, 127, 4194304)
10764 >>> xv = FPVal(-1.5, s)
10767 >>> slvr = Solver()
10768 >>> slvr.add(fpEQ(x, xv))
10771 >>> xv = FPVal(+1.5, s)
10774 >>> slvr = Solver()
10775 >>> slvr.add(fpEQ(x, xv))
10779 _z3_assert(is_bv(sgn) and is_bv(exp) and is_bv(sig), "sort mismatch")
10780 _z3_assert(sgn.sort().size() == 1, "sort mismatch")
10781 ctx = _get_ctx(ctx)
10782 _z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx, "context mismatch")
10783 return FPRef(Z3_mk_fpa_fp(ctx.ref(), sgn.ast, exp.ast, sig.ast), ctx)
10786def fpToFP(a1, a2=None, a3=None, ctx=None):
10787 """Create a Z3 floating-point conversion expression from other term sorts
10790 From a bit-vector term in IEEE 754-2008 format:
10791 >>> x = FPVal(1.0, Float32())
10792 >>> x_bv = fpToIEEEBV(x)
10793 >>> simplify(fpToFP(x_bv, Float32()))
10796 From a floating-point term with different precision:
10797 >>> x = FPVal(1.0, Float32())
10798 >>> x_db = fpToFP(RNE(), x, Float64())
10803 >>> x_r = RealVal(1.5)
10804 >>> simplify(fpToFP(RNE(), x_r, Float32()))
10807 From a signed bit-vector term:
10808 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10809 >>> simplify(fpToFP(RNE(), x_signed, Float32()))
10812 ctx = _get_ctx(ctx)
10813 if is_bv(a1) and is_fp_sort(a2):
10814 return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), a1.ast, a2.ast), ctx)
10815 elif is_fprm(a1) and is_fp(a2) and is_fp_sort(a3):
10816 return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10817 elif is_fprm(a1) and is_real(a2) and is_fp_sort(a3):
10818 return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10819 elif is_fprm(a1) and is_bv(a2) and is_fp_sort(a3):
10820 return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10822 raise Z3Exception("Unsupported combination of arguments for conversion to floating-point term.")
10825def fpBVToFP(v, sort, ctx=None):
10826 """Create a Z3 floating-point conversion expression that represents the
10827 conversion from a bit-vector term to a floating-point term.
10829 >>> x_bv = BitVecVal(0x3F800000, 32)
10830 >>> x_fp = fpBVToFP(x_bv, Float32())
10836 _z3_assert(is_bv(v), "First argument must be a Z3 bit-vector expression")
10837 _z3_assert(is_fp_sort(sort), "Second argument must be a Z3 floating-point sort.")
10838 ctx = _get_ctx(ctx)
10839 return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), v.ast, sort.ast), ctx)
10842def fpFPToFP(rm, v, sort, ctx=None):
10843 """Create a Z3 floating-point conversion expression that represents the
10844 conversion from a floating-point term to a floating-point term of different precision.
10846 >>> x_sgl = FPVal(1.0, Float32())
10847 >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
10850 >>> simplify(x_dbl)
10855 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10856 _z3_assert(is_fp(v), "Second argument must be a Z3 floating-point expression.")
10857 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10858 ctx = _get_ctx(ctx)
10859 return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10862def fpRealToFP(rm, v, sort, ctx=None):
10863 """Create a Z3 floating-point conversion expression that represents the
10864 conversion from a real term to a floating-point term.
10866 >>> x_r = RealVal(1.5)
10867 >>> x_fp = fpRealToFP(RNE(), x_r, Float32())
10873 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10874 _z3_assert(is_real(v), "Second argument must be a Z3 expression or real sort.")
10875 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10876 ctx = _get_ctx(ctx)
10877 return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10880def fpSignedToFP(rm, v, sort, ctx=None):
10881 """Create a Z3 floating-point conversion expression that represents the
10882 conversion from a signed bit-vector term (encoding an integer) to a floating-point term.
10884 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10885 >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
10887 fpToFP(RNE(), 4294967291)
10891 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10892 _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10893 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10894 ctx = _get_ctx(ctx)
10895 return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10898def fpUnsignedToFP(rm, v, sort, ctx=None):
10899 """Create a Z3 floating-point conversion expression that represents the
10900 conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.
10902 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10903 >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
10905 fpToFPUnsigned(RNE(), 4294967291)
10909 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10910 _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10911 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10912 ctx = _get_ctx(ctx)
10913 return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10916def fpToFPUnsigned(rm, x, s, ctx=None):
10917 """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression."""
10919 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10920 _z3_assert(is_bv(x), "Second argument must be a Z3 bit-vector expression")
10921 _z3_assert(is_fp_sort(s), "Third argument must be Z3 floating-point sort")
10922 ctx = _get_ctx(ctx)
10923 return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, x.ast, s.ast), ctx)
10926def fpToSBV(rm, x, s, ctx=None):
10927 """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.
10929 >>> x = FP('x', FPSort(8, 24))
10930 >>> y = fpToSBV(RTZ(), x, BitVecSort(32))
10931 >>> print(is_fp(x))
10933 >>> print(is_bv(y))
10935 >>> print(is_fp(y))
10937 >>> print(is_bv(x))
10941 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10942 _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10943 _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10944 ctx = _get_ctx(ctx)
10945 return BitVecRef(Z3_mk_fpa_to_sbv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10948def fpToUBV(rm, x, s, ctx=None):
10949 """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.
10951 >>> x = FP('x', FPSort(8, 24))
10952 >>> y = fpToUBV(RTZ(), x, BitVecSort(32))
10953 >>> print(is_fp(x))
10955 >>> print(is_bv(y))
10957 >>> print(is_fp(y))
10959 >>> print(is_bv(x))
10963 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10964 _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10965 _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10966 ctx = _get_ctx(ctx)
10967 return BitVecRef(Z3_mk_fpa_to_ubv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10970def fpToReal(x, ctx=None):
10971 """Create a Z3 floating-point conversion expression, from floating-point expression to real.
10973 >>> x = FP('x', FPSort(8, 24))
10974 >>> y = fpToReal(x)
10975 >>> print(is_fp(x))
10977 >>> print(is_real(y))
10979 >>> print(is_fp(y))
10981 >>> print(is_real(x))
10985 _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
10986 ctx = _get_ctx(ctx)
10987 return ArithRef(Z3_mk_fpa_to_real(ctx.ref(), x.ast), ctx)
10990def fpToIEEEBV(x, ctx=None):
10991 """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
10993 The size of the resulting bit-vector is automatically determined.
10995 Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
10996 knows only one NaN and it will always produce the same bit-vector representation of
10999 >>> x = FP('x', FPSort(8, 24))
11000 >>> y = fpToIEEEBV(x)
11001 >>> print(is_fp(x))
11003 >>> print(is_bv(y))
11005 >>> print(is_fp(y))
11007 >>> print(is_bv(x))
11011 _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
11012 ctx = _get_ctx(ctx)
11013 return BitVecRef(Z3_mk_fpa_to_ieee_bv(ctx.ref(), x.ast), ctx)
11016#########################################
11018# Strings, Sequences and Regular expressions
11020#########################################
11022class SeqSortRef(SortRef):
11023 """Sequence sort."""
11025 def is_string(self):
11026 """Determine if sort is a string
11027 >>> s = StringSort()
11030 >>> s = SeqSort(IntSort())
11034 return Z3_is_string_sort(self.ctx_ref(), self.ast)
11037 return _to_sort_ref(Z3_get_seq_sort_basis(self.ctx_ref(), self.ast), self.ctx)
11039class CharSortRef(SortRef):
11040 """Character sort."""
11043def StringSort(ctx=None):
11044 """Create a string sort
11045 >>> s = StringSort()
11049 ctx = _get_ctx(ctx)
11050 return SeqSortRef(Z3_mk_string_sort(ctx.ref()), ctx)
11052def CharSort(ctx=None):
11053 """Create a character sort
11054 >>> ch = CharSort()
11058 ctx = _get_ctx(ctx)
11059 return CharSortRef(Z3_mk_char_sort(ctx.ref()), ctx)
11063 """Create a sequence sort over elements provided in the argument
11064 >>> s = SeqSort(IntSort())
11065 >>> s == Unit(IntVal(1)).sort()
11068 return SeqSortRef(Z3_mk_seq_sort(s.ctx_ref(), s.ast), s.ctx)
11071class SeqRef(ExprRef):
11072 """Sequence expression."""
11075 return SeqSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
11077 def __add__(self, other):
11078 return Concat(self, other)
11080 def __radd__(self, other):
11081 return Concat(other, self)
11083 def __getitem__(self, i):
11085 i = IntVal(i, self.ctx)
11086 return _to_expr_ref(Z3_mk_seq_nth(self.ctx_ref(), self.as_ast(), i.as_ast()), self.ctx)
11090 i = IntVal(i, self.ctx)
11091 return SeqRef(Z3_mk_seq_at(self.ctx_ref(), self.as_ast(), i.as_ast()), self.ctx)
11093 def is_string(self):
11094 return Z3_is_string_sort(self.ctx_ref(), Z3_get_sort(self.ctx_ref(), self.as_ast()))
11096 def is_string_value(self):
11097 return Z3_is_string(self.ctx_ref(), self.as_ast())
11099 def as_string(self):
11100 """Return a string representation of sequence expression."""
11101 if self.is_string_value():
11102 string_length = ctypes.c_uint()
11103 chars = Z3_get_lstring(self.ctx_ref(), self.as_ast(), byref(string_length))
11104 return string_at(chars, size=string_length.value).decode("latin-1")
11105 return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
11107 def py_value(self):
11108 return self.as_string()
11110 def __le__(self, other):
11111 return _to_expr_ref(Z3_mk_str_le(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
11113 def __lt__(self, other):
11114 return _to_expr_ref(Z3_mk_str_lt(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
11116 def __ge__(self, other):
11117 return _to_expr_ref(Z3_mk_str_le(self.ctx_ref(), other.as_ast(), self.as_ast()), self.ctx)
11119 def __gt__(self, other):
11120 return _to_expr_ref(Z3_mk_str_lt(self.ctx_ref(), other.as_ast(), self.as_ast()), self.ctx)
11123def _coerce_char(ch, ctx=None):
11124 if isinstance(ch, str):
11125 ctx = _get_ctx(ctx)
11126 ch = CharVal(ch, ctx)
11127 if not is_expr(ch):
11128 raise Z3Exception("Character expression expected")
11131class CharRef(ExprRef):
11132 """Character expression."""
11134 def __le__(self, other):
11135 other = _coerce_char(other, self.ctx)
11136 return _to_expr_ref(Z3_mk_char_le(self.ctx_ref(), self.as_ast(), other.as_ast()), self.ctx)
11139 return _to_expr_ref(Z3_mk_char_to_int(self.ctx_ref(), self.as_ast()), self.ctx)
11142 return _to_expr_ref(Z3_mk_char_to_bv(self.ctx_ref(), self.as_ast()), self.ctx)
11144 def is_digit(self):
11145 return _to_expr_ref(Z3_mk_char_is_digit(self.ctx_ref(), self.as_ast()), self.ctx)
11148def CharVal(ch, ctx=None):
11149 ctx = _get_ctx(ctx)
11150 if isinstance(ch, str):
11152 if not isinstance(ch, int):
11153 raise Z3Exception("character value should be an ordinal")
11154 return _to_expr_ref(Z3_mk_char(ctx.ref(), ch), ctx)
11157 if not is_expr(bv):
11158 raise Z3Exception("Bit-vector expression needed")
11159 return _to_expr_ref(Z3_mk_char_from_bv(bv.ctx_ref(), bv.as_ast()), bv.ctx)
11161def CharToBv(ch, ctx=None):
11162 ch = _coerce_char(ch, ctx)
11165def CharToInt(ch, ctx=None):
11166 ch = _coerce_char(ch, ctx)
11169def CharIsDigit(ch, ctx=None):
11170 ch = _coerce_char(ch, ctx)
11171 return ch.is_digit()
11173def _coerce_seq(s, ctx=None):
11174 if isinstance(s, str):
11175 ctx = _get_ctx(ctx)
11176 s = StringVal(s, ctx)
11178 raise Z3Exception("Non-expression passed as a sequence")
11180 raise Z3Exception("Non-sequence passed as a sequence")
11184def _get_ctx2(a, b, ctx=None):
11195 """Return `True` if `a` is a Z3 sequence expression.
11196 >>> print (is_seq(Unit(IntVal(0))))
11198 >>> print (is_seq(StringVal("abc")))
11201 return isinstance(a, SeqRef)
11204def is_string(a: Any) -> bool:
11205 """Return `True` if `a` is a Z3 string expression.
11206 >>> print (is_string(StringVal("ab")))
11209 return isinstance(a, SeqRef) and a.is_string()
11212def is_string_value(a: Any) -> bool:
11213 """return 'True' if 'a' is a Z3 string constant expression.
11214 >>> print (is_string_value(StringVal("a")))
11216 >>> print (is_string_value(StringVal("a") + StringVal("b")))
11219 return isinstance(a, SeqRef) and a.is_string_value()
11221def StringVal(s, ctx=None):
11222 """create a string expression"""
11223 s = "".join(str(ch) if 32 <= ord(ch) and ord(ch) < 127 else "\\u{%x}" % (ord(ch)) for ch in s)
11224 ctx = _get_ctx(ctx)
11225 return SeqRef(Z3_mk_string(ctx.ref(), s), ctx)
11228def String(name, ctx=None):
11229 """Return a string constant named `name`. If `ctx=None`, then the global context is used.
11231 >>> x = String('x')
11233 ctx = _get_ctx(ctx)
11234 return SeqRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), StringSort(ctx).ast), ctx)
11237def Strings(names, ctx=None):
11238 """Return a tuple of String constants. """
11239 ctx = _get_ctx(ctx)
11240 if isinstance(names, str):
11241 names = names.split(" ")
11242 return [String(name, ctx) for name in names]
11245def SubString(s, offset, length):
11246 """Extract substring or subsequence starting at offset.
11248 This is a convenience function that redirects to Extract(s, offset, length).
11250 >>> s = StringVal("hello world")
11251 >>> SubString(s, 6, 5) # Extract "world"
11252 str.substr("hello world", 6, 5)
11253 >>> simplify(SubString(StringVal("hello"), 1, 3))
11256 return Extract(s, offset, length)
11259def SubSeq(s, offset, length):
11260 """Extract substring or subsequence starting at offset.
11262 This is a convenience function that redirects to Extract(s, offset, length).
11264 >>> s = StringVal("hello world")
11265 >>> SubSeq(s, 0, 5) # Extract "hello"
11266 str.substr("hello world", 0, 5)
11267 >>> simplify(SubSeq(StringVal("testing"), 2, 4))
11270 return Extract(s, offset, length)
11274 """Create the empty sequence of the given sort
11275 >>> e = Empty(StringSort())
11276 >>> e2 = StringVal("")
11277 >>> print(e.eq(e2))
11279 >>> e3 = Empty(SeqSort(IntSort()))
11282 >>> e4 = Empty(ReSort(SeqSort(IntSort())))
11284 Empty(ReSort(Seq(Int)))
11286 if isinstance(s, SeqSortRef):
11287 return SeqRef(Z3_mk_seq_empty(s.ctx_ref(), s.ast), s.ctx)
11288 if isinstance(s, ReSortRef):
11289 return ReRef(Z3_mk_re_empty(s.ctx_ref(), s.ast), s.ctx)
11290 raise Z3Exception("Non-sequence, non-regular expression sort passed to Empty")
11294 """Create the regular expression that accepts the universal language
11295 >>> e = Full(ReSort(SeqSort(IntSort())))
11297 Full(ReSort(Seq(Int)))
11298 >>> e1 = Full(ReSort(StringSort()))
11300 Full(ReSort(String))
11302 if isinstance(s, ReSortRef):
11303 return ReRef(Z3_mk_re_full(s.ctx_ref(), s.ast), s.ctx)
11304 raise Z3Exception("Non-sequence, non-regular expression sort passed to Full")
11309 """Create a singleton sequence"""
11310 return SeqRef(Z3_mk_seq_unit(a.ctx_ref(), a.as_ast()), a.ctx)
11314 """Check if 'a' is a prefix of 'b'
11315 >>> s1 = PrefixOf("ab", "abc")
11318 >>> s2 = PrefixOf("bc", "abc")
11322 ctx = _get_ctx2(a, b)
11323 a = _coerce_seq(a, ctx)
11324 b = _coerce_seq(b, ctx)
11325 return BoolRef(Z3_mk_seq_prefix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11329 """Check if 'a' is a suffix of 'b'
11330 >>> s1 = SuffixOf("ab", "abc")
11333 >>> s2 = SuffixOf("bc", "abc")
11337 ctx = _get_ctx2(a, b)
11338 a = _coerce_seq(a, ctx)
11339 b = _coerce_seq(b, ctx)
11340 return BoolRef(Z3_mk_seq_suffix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11344 """Check if 'a' contains 'b'
11345 >>> s1 = Contains("abc", "ab")
11348 >>> s2 = Contains("abc", "bc")
11351 >>> x, y, z = Strings('x y z')
11352 >>> s3 = Contains(Concat(x,y,z), y)
11356 ctx = _get_ctx2(a, b)
11357 a = _coerce_seq(a, ctx)
11358 b = _coerce_seq(b, ctx)
11359 return BoolRef(Z3_mk_seq_contains(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
11362def Replace(s, src, dst):
11363 """Replace the first occurrence of 'src' by 'dst' in 's'
11364 >>> r = Replace("aaa", "a", "b")
11368 ctx = _get_ctx2(dst, s)
11369 if ctx is None and is_expr(src):
11371 src = _coerce_seq(src, ctx)
11372 dst = _coerce_seq(dst, ctx)
11373 s = _coerce_seq(s, ctx)
11374 return SeqRef(Z3_mk_seq_replace(src.ctx_ref(), s.as_ast(), src.as_ast(), dst.as_ast()), s.ctx)
11377def IndexOf(s, substr, offset=None):
11378 """Retrieve the index of substring within a string starting at a specified offset.
11379 >>> simplify(IndexOf("abcabc", "bc", 0))
11381 >>> simplify(IndexOf("abcabc", "bc", 2))
11387 if is_expr(offset):
11389 ctx = _get_ctx2(s, substr, ctx)
11390 s = _coerce_seq(s, ctx)
11391 substr = _coerce_seq(substr, ctx)
11392 if _is_int(offset):
11393 offset = IntVal(offset, ctx)
11394 return ArithRef(Z3_mk_seq_index(s.ctx_ref(), s.as_ast(), substr.as_ast(), offset.as_ast()), s.ctx)
11397def LastIndexOf(s, substr):
11398 """Retrieve the last index of substring within a string"""
11400 ctx = _get_ctx2(s, substr, ctx)
11401 s = _coerce_seq(s, ctx)
11402 substr = _coerce_seq(substr, ctx)
11403 return ArithRef(Z3_mk_seq_last_index(s.ctx_ref(), s.as_ast(), substr.as_ast()), s.ctx)
11407 """Obtain the length of a sequence 's'
11408 >>> l = Length(StringVal("abc"))
11413 return ArithRef(Z3_mk_seq_length(s.ctx_ref(), s.as_ast()), s.ctx)
11416 """Map function 'f' over sequence 's'"""
11417 ctx = _get_ctx2(f, s)
11418 s = _coerce_seq(s, ctx)
11419 return _to_expr_ref(Z3_mk_seq_map(s.ctx_ref(), f.as_ast(), s.as_ast()), ctx)
11421def SeqMapI(f, i, s):
11422 """Map function 'f' over sequence 's' at index 'i'"""
11423 ctx = _get_ctx2(f, s)
11424 s = _coerce_seq(s, ctx)
11427 return _to_expr_ref(Z3_mk_seq_mapi(s.ctx_ref(), f.as_ast(), i.as_ast(), s.as_ast()), ctx)
11429def SeqFoldLeft(f, a, s):
11430 ctx = _get_ctx2(f, s)
11431 s = _coerce_seq(s, ctx)
11433 return _to_expr_ref(Z3_mk_seq_foldl(s.ctx_ref(), f.as_ast(), a.as_ast(), s.as_ast()), ctx)
11435def SeqFoldLeftI(f, i, a, s):
11436 ctx = _get_ctx2(f, s)
11437 s = _coerce_seq(s, ctx)
11440 return _to_expr_ref(Z3_mk_seq_foldli(s.ctx_ref(), f.as_ast(), i.as_ast(), a.as_ast(), s.as_ast()), ctx)
11443 """Convert string expression to integer
11444 >>> a = StrToInt("1")
11445 >>> simplify(1 == a)
11447 >>> b = StrToInt("2")
11448 >>> simplify(1 == b)
11450 >>> c = StrToInt(IntToStr(2))
11451 >>> simplify(1 == c)
11455 return ArithRef(Z3_mk_str_to_int(s.ctx_ref(), s.as_ast()), s.ctx)
11459 """Convert integer expression to string"""
11462 return SeqRef(Z3_mk_int_to_str(s.ctx_ref(), s.as_ast()), s.ctx)
11466 """Convert a unit length string to integer code"""
11469 return ArithRef(Z3_mk_string_to_code(s.ctx_ref(), s.as_ast()), s.ctx)
11472 """Convert code to a string"""
11475 return SeqRef(Z3_mk_string_from_code(c.ctx_ref(), c.as_ast()), c.ctx)
11477def Re(s, ctx=None):
11478 """The regular expression that accepts sequence 's'
11480 >>> s2 = Re(StringVal("ab"))
11481 >>> s3 = Re(Unit(BoolVal(True)))
11483 s = _coerce_seq(s, ctx)
11484 return ReRef(Z3_mk_seq_to_re(s.ctx_ref(), s.as_ast()), s.ctx)
11487# Regular expressions
11489class ReSortRef(SortRef):
11490 """Regular expression sort."""
11493 return _to_sort_ref(Z3_get_re_sort_basis(self.ctx_ref(), self.ast), self.ctx)
11498 return ReSortRef(Z3_mk_re_sort(s.ctx.ref(), s.ast), s.ctx)
11499 if s is None or isinstance(s, Context):
11501 return ReSortRef(Z3_mk_re_sort(ctx.ref(), Z3_mk_string_sort(ctx.ref())), s.ctx)
11502 raise Z3Exception("Regular expression sort constructor expects either a string or a context or no argument")
11505class ReRef(ExprRef):
11506 """Regular expressions."""
11508 def __add__(self, other):
11509 return Union(self, other)
11513 return isinstance(s, ReRef)
11517 """Create regular expression membership test
11518 >>> re = Union(Re("a"),Re("b"))
11519 >>> print (simplify(InRe("a", re)))
11521 >>> print (simplify(InRe("b", re)))
11523 >>> print (simplify(InRe("c", re)))
11526 s = _coerce_seq(s, re.ctx)
11527 return BoolRef(Z3_mk_seq_in_re(s.ctx_ref(), s.as_ast(), re.as_ast()), s.ctx)
11531 """Create union of regular expressions.
11532 >>> re = Union(Re("a"), Re("b"), Re("c"))
11533 >>> print (simplify(InRe("d", re)))
11536 args = _get_args(args)
11539 _z3_assert(sz > 0, "At least one argument expected.")
11540 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
11545 for i in range(sz):
11546 v[i] = args[i].as_ast()
11547 return ReRef(Z3_mk_re_union(ctx.ref(), sz, v), ctx)
11550def Intersect(*args):
11551 """Create intersection of regular expressions.
11552 >>> re = Intersect(Re("a"), Re("b"), Re("c"))
11554 args = _get_args(args)
11557 _z3_assert(sz > 0, "At least one argument expected.")
11558 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
11563 for i in range(sz):
11564 v[i] = args[i].as_ast()
11565 return ReRef(Z3_mk_re_intersect(ctx.ref(), sz, v), ctx)
11569 """Create the regular expression accepting one or more repetitions of argument.
11570 >>> re = Plus(Re("a"))
11571 >>> print(simplify(InRe("aa", re)))
11573 >>> print(simplify(InRe("ab", re)))
11575 >>> print(simplify(InRe("", re)))
11579 _z3_assert(is_expr(re), "expression expected")
11580 return ReRef(Z3_mk_re_plus(re.ctx_ref(), re.as_ast()), re.ctx)
11584 """Create the regular expression that optionally accepts the argument.
11585 >>> re = Option(Re("a"))
11586 >>> print(simplify(InRe("a", re)))
11588 >>> print(simplify(InRe("", re)))
11590 >>> print(simplify(InRe("aa", re)))
11594 _z3_assert(is_expr(re), "expression expected")
11595 return ReRef(Z3_mk_re_option(re.ctx_ref(), re.as_ast()), re.ctx)
11599 """Create the complement regular expression."""
11600 return ReRef(Z3_mk_re_complement(re.ctx_ref(), re.as_ast()), re.ctx)
11604 """Create the regular expression accepting zero or more repetitions of argument.
11605 >>> re = Star(Re("a"))
11606 >>> print(simplify(InRe("aa", re)))
11608 >>> print(simplify(InRe("ab", re)))
11610 >>> print(simplify(InRe("", re)))
11614 _z3_assert(is_expr(re), "expression expected")
11615 return ReRef(Z3_mk_re_star(re.ctx_ref(), re.as_ast()), re.ctx)
11618def Loop(re, lo, hi=0):
11619 """Create the regular expression accepting between a lower and upper bound repetitions
11620 >>> re = Loop(Re("a"), 1, 3)
11621 >>> print(simplify(InRe("aa", re)))
11623 >>> print(simplify(InRe("aaaa", re)))
11625 >>> print(simplify(InRe("", re)))
11629 _z3_assert(is_expr(re), "expression expected")
11630 return ReRef(Z3_mk_re_loop(re.ctx_ref(), re.as_ast(), lo, hi), re.ctx)
11633def Range(lo, hi, ctx=None):
11634 """Create the range regular expression over two sequences of length 1
11635 >>> range = Range("a","z")
11636 >>> print(simplify(InRe("b", range)))
11638 >>> print(simplify(InRe("bb", range)))
11641 lo = _coerce_seq(lo, ctx)
11642 hi = _coerce_seq(hi, ctx)
11644 _z3_assert(is_expr(lo), "expression expected")
11645 _z3_assert(is_expr(hi), "expression expected")
11646 return ReRef(Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx)
11648def Diff(a, b, ctx=None):
11649 """Create the difference regular expression
11652 _z3_assert(is_expr(a), "expression expected")
11653 _z3_assert(is_expr(b), "expression expected")
11654 return ReRef(Z3_mk_re_diff(a.ctx_ref(), a.ast, b.ast), a.ctx)
11656def AllChar(regex_sort, ctx=None):
11657 """Create a regular expression that accepts all single character strings
11659 return ReRef(Z3_mk_re_allchar(regex_sort.ctx_ref(), regex_sort.ast), regex_sort.ctx)
11664def PartialOrder(a, index):
11665 return FuncDeclRef(Z3_mk_partial_order(a.ctx_ref(), a.ast, index), a.ctx)
11668def LinearOrder(a, index):
11669 return FuncDeclRef(Z3_mk_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11672def TreeOrder(a, index):
11673 return FuncDeclRef(Z3_mk_tree_order(a.ctx_ref(), a.ast, index), a.ctx)
11676def PiecewiseLinearOrder(a, index):
11677 return FuncDeclRef(Z3_mk_piecewise_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11680def TransitiveClosure(f):
11681 """Given a binary relation R, such that the two arguments have the same sort
11682 create the transitive closure relation R+.
11683 The transitive closure R+ is a new relation.
11685 return FuncDeclRef(Z3_mk_transitive_closure(f.ctx_ref(), f.ast), f.ctx)
11689 super(ctypes.c_void_p, ast).__init__(ptr)
11692def to_ContextObj(ptr,):
11693 ctx = ContextObj(ptr)
11694 super(ctypes.c_void_p, ctx).__init__(ptr)
11697def to_AstVectorObj(ptr,):
11698 v = AstVectorObj(ptr)
11699 super(ctypes.c_void_p, v).__init__(ptr)
11702# NB. my-hacky-class only works for a single instance of OnClause
11703# it should be replaced with a proper correlation between OnClause
11704# and object references that can be passed over the FFI.
11705# for UserPropagator we use a global dictionary, which isn't great code.
11707_my_hacky_class = None
11708def on_clause_eh(ctx, p, n, dep, clause):
11709 onc = _my_hacky_class
11710 p = _to_expr_ref(to_Ast(p), onc.ctx)
11711 clause = AstVector(to_AstVectorObj(clause), onc.ctx)
11712 deps = [dep[i] for i in range(n)]
11713 onc.on_clause(p, deps, clause)
11715_on_clause_eh = Z3_on_clause_eh(on_clause_eh)
11718 def __init__(self, s, on_clause):
11721 self.on_clause = on_clause
11723 global _my_hacky_class
11724 _my_hacky_class = self
11725 Z3_solver_register_on_clause(self.ctx.ref(), self.s.solver, self.idx, _on_clause_eh)
11729 def __init__(self):
11733 def set_threaded(self):
11734 if self.lock is None:
11736 self.lock = threading.Lock()
11738 def get(self, ctx):
11741 r = self.bases[ctx]
11743 r = self.bases[ctx]
11746 def set(self, ctx, r):
11749 self.bases[ctx] = r
11751 self.bases[ctx] = r
11753 def insert(self, r):
11756 id = len(self.bases) + 3
11759 id = len(self.bases) + 3
11764_prop_closures = None
11767def ensure_prop_closures():
11768 global _prop_closures
11769 if _prop_closures is None:
11770 _prop_closures = PropClosures()
11773def user_prop_push(ctx, cb):
11774 prop = _prop_closures.get(ctx)
11779def user_prop_pop(ctx, cb, num_scopes):
11780 prop = _prop_closures.get(ctx)
11782 prop.pop(num_scopes)
11785def user_prop_fresh(ctx, _new_ctx):
11786 _prop_closures.set_threaded()
11787 prop = _prop_closures.get(ctx)
11789 Z3_del_context(nctx.ctx)
11790 new_ctx = to_ContextObj(_new_ctx)
11792 nctx.eh = Z3_set_error_handler(new_ctx, z3_error_handler)
11794 new_prop = prop.fresh(nctx)
11795 _prop_closures.set(new_prop.id, new_prop)
11799def user_prop_fixed(ctx, cb, id, value):
11800 prop = _prop_closures.get(ctx)
11803 id = _to_expr_ref(to_Ast(id), prop.ctx())
11804 value = _to_expr_ref(to_Ast(value), prop.ctx())
11805 prop.fixed(id, value)
11808def user_prop_created(ctx, cb, id):
11809 prop = _prop_closures.get(ctx)
11812 id = _to_expr_ref(to_Ast(id), prop.ctx())
11817def user_prop_final(ctx, cb):
11818 prop = _prop_closures.get(ctx)
11824def user_prop_eq(ctx, cb, x, y):
11825 prop = _prop_closures.get(ctx)
11828 x = _to_expr_ref(to_Ast(x), prop.ctx())
11829 y = _to_expr_ref(to_Ast(y), prop.ctx())
11833def user_prop_diseq(ctx, cb, x, y):
11834 prop = _prop_closures.get(ctx)
11837 x = _to_expr_ref(to_Ast(x), prop.ctx())
11838 y = _to_expr_ref(to_Ast(y), prop.ctx())
11842def user_prop_decide(ctx, cb, t_ref, idx, phase):
11843 prop = _prop_closures.get(ctx)
11846 t = _to_expr_ref(to_Ast(t_ref), prop.ctx())
11847 prop.decide(t, idx, phase)
11850def user_prop_binding(ctx, cb, q_ref, inst_ref):
11851 prop = _prop_closures.get(ctx)
11854 q = _to_expr_ref(to_Ast(q_ref), prop.ctx())
11855 inst = _to_expr_ref(to_Ast(inst_ref), prop.ctx())
11856 r = prop.binding(q, inst)
11861_user_prop_push = Z3_push_eh(user_prop_push)
11862_user_prop_pop = Z3_pop_eh(user_prop_pop)
11863_user_prop_fresh = Z3_fresh_eh(user_prop_fresh)
11864_user_prop_fixed = Z3_fixed_eh(user_prop_fixed)
11865_user_prop_created = Z3_created_eh(user_prop_created)
11866_user_prop_final = Z3_final_eh(user_prop_final)
11867_user_prop_eq = Z3_eq_eh(user_prop_eq)
11868_user_prop_diseq = Z3_eq_eh(user_prop_diseq)
11869_user_prop_decide = Z3_decide_eh(user_prop_decide)
11870_user_prop_binding = Z3_on_binding_eh(user_prop_binding)
11873def PropagateFunction(name, *sig):
11874 """Create a function that gets tracked by user propagator.
11875 Every term headed by this function symbol is tracked.
11876 If a term is fixed and the fixed callback is registered a
11877 callback is invoked that the term headed by this function is fixed.
11879 sig = _get_args(sig)
11881 _z3_assert(len(sig) > 0, "At least two arguments expected")
11882 arity = len(sig) - 1
11885 _z3_assert(is_sort(rng), "Z3 sort expected")
11886 dom = (Sort * arity)()
11887 for i in range(arity):
11889 _z3_assert(is_sort(sig[i]), "Z3 sort expected")
11890 dom[i] = sig[i].ast
11892 return FuncDeclRef(Z3_solver_propagate_declare(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
11896class UserPropagateBase:
11899 # Either solver is set or ctx is set.
11900 # Propagators that are created through callbacks
11901 # to "fresh" inherit the context of that is supplied
11902 # as argument to the callback.
11903 # This context should not be deleted. It is owned by the solver.
11905 def __init__(self, s, ctx=None):
11906 assert s is None or ctx is None
11907 ensure_prop_closures()
11910 self.fresh_ctx = None
11912 self.id = _prop_closures.insert(self)
11918 self.created = None
11919 self.binding = None
11921 self.fresh_ctx = ctx
11923 Z3_solver_propagate_init(self.ctx_ref(),
11925 ctypes.c_void_p(self.id),
11932 self._ctx.ctx = None
11936 return self.fresh_ctx
11938 return self.solver.ctx
11941 return self.ctx().ref()
11943 def add_fixed(self, fixed):
11944 assert not self.fixed
11945 assert not self._ctx
11947 Z3_solver_propagate_fixed(self.ctx_ref(), self.solver.solver, _user_prop_fixed)
11950 def add_created(self, created):
11951 assert not self.created
11952 assert not self._ctx
11954 Z3_solver_propagate_created(self.ctx_ref(), self.solver.solver, _user_prop_created)
11955 self.created = created
11957 def add_final(self, final):
11958 assert not self.final
11959 assert not self._ctx
11961 Z3_solver_propagate_final(self.ctx_ref(), self.solver.solver, _user_prop_final)
11964 def add_eq(self, eq):
11966 assert not self._ctx
11968 Z3_solver_propagate_eq(self.ctx_ref(), self.solver.solver, _user_prop_eq)
11971 def add_diseq(self, diseq):
11972 assert not self.diseq
11973 assert not self._ctx
11975 Z3_solver_propagate_diseq(self.ctx_ref(), self.solver.solver, _user_prop_diseq)
11978 def add_decide(self, decide):
11979 assert not self.decide
11980 assert not self._ctx
11982 Z3_solver_propagate_decide(self.ctx_ref(), self.solver.solver, _user_prop_decide)
11983 self.decide = decide
11985 def add_on_binding(self, binding):
11986 assert not self.binding
11987 assert not self._ctx
11989 Z3_solver_propagate_on_binding(self.ctx_ref(), self.solver.solver, _user_prop_binding)
11990 self.binding = binding
11993 raise Z3Exception("push needs to be overwritten")
11995 def pop(self, num_scopes):
11996 raise Z3Exception("pop needs to be overwritten")
11998 def fresh(self, new_ctx):
11999 raise Z3Exception("fresh needs to be overwritten")
12002 assert not self._ctx
12004 Z3_solver_propagate_register(self.ctx_ref(), self.solver.solver, e.ast)
12006 Z3_solver_propagate_register_cb(self.ctx_ref(), ctypes.c_void_p(self.cb), e.ast)
12009 # Tell the solver to perform the next split on a given term
12010 # If the term is a bit-vector the index idx specifies the index of the Boolean variable being
12011 # split on. A phase of true = 1/false = -1/undef = 0 = let solver decide is the last argument.
12013 def next_split(self, t, idx, phase):
12014 return Z3_solver_next_split(self.ctx_ref(), ctypes.c_void_p(self.cb), t.ast, idx, phase)
12017 # Propagation can only be invoked as during a fixed or final callback.
12019 def propagate(self, e, ids, eqs=[]):
12020 _ids, num_fixed = _to_ast_array(ids)
12022 _lhs, _num_lhs = _to_ast_array([x for x, y in eqs])
12023 _rhs, _num_rhs = _to_ast_array([y for x, y in eqs])
12024 return Z3_solver_propagate_consequence(e.ctx.ref(), ctypes.c_void_p(
12025 self.cb), num_fixed, _ids, num_eqs, _lhs, _rhs, e.ast)
12027 def conflict(self, deps = [], eqs = []):
12028 self.propagate(BoolVal(False, self.ctx()), deps, eqs)
approx(self, precision=10)
__rtruediv__(self, other)
__deepcopy__(self, memo={})
__init__(self, m=None, ctx=None)
__deepcopy__(self, memo={})
__init__(self, ast, ctx=None)
__deepcopy__(self, memo={})
translate(self, other_ctx)
__init__(self, v=None, ctx=None)
__rtruediv__(self, other)
__deepcopy__(self, memo={})
__init__(self, *args, **kws)
__deepcopy__(self, memo={})
__init__(self, name, ctx=None)
declare(self, name, *args)
declare_core(self, name, rec_name, *args)
__deepcopy__(self, memo={})
__init__(self, entry, ctx)
__deepcopy__(self, memo={})
translate(self, other_ctx)
__deepcopy__(self, memo={})
assert_exprs(self, *args)
dimacs(self, include_names=True)
simplify(self, *arguments, **keywords)
convert_model(self, model)
__init__(self, models=True, unsat_cores=False, proofs=False, ctx=None, goal=None)
__deepcopy__(self, memo={})
eval(self, t, model_completion=False)
project_with_witness(self, vars, fml)
update_value(self, x, value)
evaluate(self, t, model_completion=False)
__deepcopy__(self, memo={})
__init__(self, descr, ctx=None)
get_documentation(self, n)
__deepcopy__(self, memo={})
__init__(self, ctx=None, params=None)
denominator_as_long(self)
Strings, Sequences and Regular expressions.
__init__(self, solver=None, ctx=None, logFile=None)
assert_and_track(self, a, p)
import_model_converter(self, other)
assert_exprs(self, *args)
check(self, *assumptions)
__exit__(self, *exc_info)
__deepcopy__(self, memo={})
__init__(self, stats, ctx)
Z3_ast Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a)
Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL,...
Z3_sort Z3_API Z3_mk_int_sort(Z3_context c)
Create the integer type.
Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const *domain, Z3_sort range)
Create an array type with N arguments.
bool Z3_API Z3_open_log(Z3_string filename)
Log interaction to a file.
Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(Z3_context c, Z3_func_decl d, unsigned idx)
Return the parameter type associated with a declaration.
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.
Z3_decl_kind Z3_API Z3_get_decl_kind(Z3_context c, Z3_func_decl d)
Return declaration kind corresponding to declaration.
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)
Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.
Z3_ast Z3_API Z3_func_interp_get_else(Z3_context c, Z3_func_interp f)
Return the 'else' value of the given function interpretation.
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
void Z3_API Z3_ast_map_inc_ref(Z3_context c, Z3_ast_map m)
Increment the reference counter of the given AST map.
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a)
Return the declaration of a constant or function application.
void Z3_API Z3_del_context(Z3_context c)
Delete the given logical context.
Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.
Z3_ast Z3_API Z3_ast_map_find(Z3_context c, Z3_ast_map m, Z3_ast k)
Return the value associated with the key k.
Z3_string Z3_API Z3_ast_map_to_string(Z3_context c, Z3_ast_map m)
Convert the given map into a string.
Z3_string Z3_API Z3_param_descrs_to_string(Z3_context c, Z3_param_descrs p)
Convert a parameter description set into a string. This function is mainly used for printing the cont...
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...
void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)
Set the given solver using the given parameters.
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.
Z3_params Z3_API Z3_mk_params(Z3_context c)
Create a Z3 (empty) parameter set. Starting at Z3 4.0, parameter sets are used to configure many comp...
unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d)
Return the number of parameters associated with a declaration.
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.
Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.
Z3_param_kind Z3_API Z3_param_descrs_get_kind(Z3_context c, Z3_param_descrs p, Z3_symbol n)
Return the kind associated with the given parameter name n.
void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body)
Define the body of a recursive function.
Z3_ast Z3_API Z3_mk_true(Z3_context c)
Create an AST node representing true.
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.
Z3_func_interp Z3_API Z3_add_func_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast default_value)
Create a fresh func_interp object, add it to a model for a specified function. It has reference count...
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.
unsigned Z3_API Z3_get_arity(Z3_context c, Z3_func_decl d)
Alias for Z3_get_domain_size.
void Z3_API Z3_ast_vector_set(Z3_context c, Z3_ast_vector v, unsigned i, Z3_ast a)
Update position i of the AST vector v with the AST a.
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s)
Convert a statistics into a string.
Z3_sort Z3_API Z3_mk_real_sort(Z3_context c)
Create the real type.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
bool Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value)
Get a global (or module) parameter.
bool Z3_API Z3_goal_inconsistent(Z3_context c, Z3_goal g)
Return true if the given goal contains the formula false.
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.
void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)
Decrement the reference counter of the given solver.
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)
Return the declaration of the i-th function in the given model.
bool Z3_API Z3_ast_map_contains(Z3_context c, Z3_ast_map m, Z3_ast k)
Return true if the map m contains the AST key k.
Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty)
Create a numeral of a given sort.
unsigned Z3_API Z3_func_entry_get_num_args(Z3_context c, Z3_func_entry e)
Return the number of arguments in a Z3_func_entry object.
Z3_symbol Z3_API Z3_get_decl_symbol_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the double value associated with an double parameter.
Z3_symbol Z3_API Z3_get_quantifier_skolem_id(Z3_context c, Z3_ast a)
Obtain skolem id of quantifier.
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].
void Z3_API Z3_interrupt(Z3_context c)
Interrupt the execution of a Z3 procedure. This procedure can be used to interrupt: solvers,...
void Z3_API Z3_goal_assert(Z3_context c, Z3_goal g, Z3_ast a)
Add a new formula a to the given goal. The formula is split according to the following procedure that...
Z3_symbol Z3_API Z3_param_descrs_get_name(Z3_context c, Z3_param_descrs p, unsigned i)
Return the name of the parameter at given index i.
Z3_ast Z3_API Z3_func_entry_get_value(Z3_context c, Z3_func_entry e)
Return the value of this point.
bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a)
Determine if ast is an existential quantifier.
Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s)
Create a free (uninterpreted) type using the given name (symbol).
Z3_ast Z3_API Z3_mk_false(Z3_context c)
Create an AST node representing false.
Z3_ast_vector Z3_API Z3_ast_map_keys(Z3_context c, Z3_ast_map m)
Return the keys stored in the given map.
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_model Z3_API Z3_goal_convert_model(Z3_context c, Z3_goal g, Z3_model m)
Convert a model of the formulas of a goal to a model of an original goal. The model may be null,...
void Z3_API Z3_del_constructor(Z3_context c, Z3_constructor constr)
Reclaim memory allocated to constructor.
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a)
Convert the given AST node into a string.
Z3_context Z3_API Z3_mk_context_rc(Z3_config c)
Create a context using the given configuration. This function is similar to Z3_mk_context....
Z3_string Z3_API Z3_get_full_version(void)
Return a string that fully describes the version of Z3 in use.
void Z3_API Z3_enable_trace(Z3_string tag)
Enable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.
unsigned Z3_API Z3_get_quantifier_num_patterns(Z3_context c, Z3_ast a)
Return number of patterns used in quantifier.
Z3_symbol Z3_API Z3_get_quantifier_bound_name(Z3_context c, Z3_ast a, unsigned i)
Return symbol of the i'th bound variable.
bool Z3_API Z3_stats_is_uint(Z3_context c, Z3_stats s, unsigned idx)
Return true if the given statistical data is a unsigned integer.
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.
void Z3_API Z3_set_ast_print_mode(Z3_context c, Z3_ast_print_mode mode)
Select mode for the format used for pretty-printing AST nodes.
Z3_ast Z3_API Z3_mk_array_default(Z3_context c, Z3_ast array)
Access the array default value. Produces the default range value, for arrays that can be represented ...
unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m)
Return the number of uninterpreted sorts that m assigns an interpretation to.
Z3_ast_vector Z3_API Z3_ast_vector_translate(Z3_context s, Z3_ast_vector v, Z3_context t)
Translate the AST vector v from context s into an AST vector in context t.
void Z3_API Z3_func_entry_inc_ref(Z3_context c, Z3_func_entry e)
Increment the reference counter of the given Z3_func_entry object.
Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty)
Declare and create a fresh constant.
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.
void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)
Create a backtracking point.
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.
Z3_goal Z3_API Z3_goal_translate(Z3_context source, Z3_goal g, Z3_context target)
Copy a goal g from the context source to the context target.
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.
Z3_string Z3_API Z3_ast_vector_to_string(Z3_context c, Z3_ast_vector v)
Convert AST vector into a string.
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.
bool Z3_API Z3_is_numeral_ast(Z3_context c, Z3_ast a)
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).
bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a)
The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3....
Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a constant or function.
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
void Z3_API Z3_params_set_bool(Z3_context c, Z3_params p, Z3_symbol k, bool v)
Add a Boolean parameter k with value v to the parameter set p.
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i)
Array read. The argument a is the array and i is the index of the array that gets read.
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...
unsigned Z3_API Z3_goal_size(Z3_context c, Z3_goal g)
Return the number of formulas in the given goal.
void Z3_API Z3_stats_inc_ref(Z3_context c, Z3_stats s)
Increment the reference counter of the given statistics object.
Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs)
n-ary Array read. The argument a is the array and idxs are the indices of the array that gets read.
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)
Return the coefficients of the defining polynomial.
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m)
Decrement the reference counter of the given model.
Z3_sort Z3_API Z3_mk_datatype_sort(Z3_context c, Z3_symbol name, unsigned num_params, Z3_sort const params[])
create a forward reference to a recursive datatype being declared. The forward reference can be used ...
void Z3_API Z3_func_interp_inc_ref(Z3_context c, Z3_func_interp f)
Increment the reference counter of the given Z3_func_interp object.
void Z3_API Z3_params_set_double(Z3_context c, Z3_params p, Z3_symbol k, double v)
Add a double parameter k with value v to the parameter set p.
Z3_string Z3_API Z3_param_descrs_get_documentation(Z3_context c, Z3_param_descrs p, Z3_symbol s)
Retrieve documentation string corresponding to parameter name s.
Z3_solver Z3_API Z3_mk_solver(Z3_context c)
Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...
Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)
Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.
int Z3_API Z3_get_symbol_int(Z3_context c, Z3_symbol s)
Return the symbol int value.
Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a)
Return the function declaration f associated with a (_ as_array f) node.
Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the left t2 times.
void Z3_API Z3_goal_inc_ref(Z3_context c, Z3_goal g)
Increment the reference counter of the given goal.
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
unsigned Z3_API Z3_get_datatype_sort_num_constructors(Z3_context c, Z3_sort t)
Return number of constructors for datatype.
void Z3_API Z3_params_set_uint(Z3_context c, Z3_params p, Z3_symbol k, unsigned v)
Add a unsigned parameter k with value v to the parameter set p.
Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])
Check whether the assertions in the given solver and optional assumptions are consistent or not.
Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i)
Return a uninterpreted sort that m assigns an interpretation.
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...
Z3_sort Z3_API Z3_get_array_sort_domain_n(Z3_context c, Z3_sort t, unsigned idx)
Return the i'th domain sort of an n-dimensional array.
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.
int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the integer value associated with an integer parameter.
unsigned Z3_API Z3_get_quantifier_num_no_patterns(Z3_context c, Z3_ast a)
Return number of no_patterns used in quantifier.
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(Z3_context c, Z3_sort t, unsigned idx)
Return idx'th constructor.
void Z3_API Z3_ast_vector_resize(Z3_context c, Z3_ast_vector v, unsigned n)
Resize the AST vector v.
Z3_ast Z3_API Z3_mk_quantifier_const_ex(Z3_context c, bool is_forall, unsigned weight, Z3_symbol quantifier_id, Z3_symbol skolem_id, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], unsigned num_no_patterns, Z3_ast const no_patterns[], Z3_ast body)
Create a universal or existential quantifier using a list of constants that will form the set of boun...
Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[])
Create a pattern for quantifier instantiation.
Z3_symbol_kind Z3_API Z3_get_symbol_kind(Z3_context c, Z3_symbol s)
Return Z3_INT_SYMBOL if the symbol was constructed using Z3_mk_int_symbol, and Z3_STRING_SYMBOL if th...
bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a)
Determine if ast is a lambda expression.
unsigned Z3_API Z3_stats_get_uint_value(Z3_context c, Z3_stats s, unsigned idx)
Return the unsigned value of the given statistical data.
Z3_sort Z3_API Z3_get_array_sort_domain(Z3_context c, Z3_sort t)
Return the domain of the given array sort. In the case of a multi-dimensional array,...
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...
Z3_ast Z3_API Z3_func_decl_to_ast(Z3_context c, Z3_func_decl f)
Convert a Z3_func_decl into Z3_ast. This is just type casting.
void Z3_API Z3_add_const_interp(Z3_context c, Z3_model m, Z3_func_decl f, Z3_ast a)
Add a constant interpretation.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)
Return which root of the polynomial the algebraic number represents.
void Z3_API Z3_params_dec_ref(Z3_context c, Z3_params p)
Decrement the reference counter of the given parameter set.
Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i)
Return the i-th argument of the given application.
Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m)
Convert the given model into a string.
Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a fresh constant or function.
unsigned Z3_API Z3_ast_map_size(Z3_context c, Z3_ast_map m)
Return the size of the given map.
unsigned Z3_API Z3_param_descrs_size(Z3_context c, Z3_param_descrs p)
Return the number of parameters in the given parameter description set.
Z3_string Z3_API Z3_goal_to_dimacs_string(Z3_context c, Z3_goal g, bool include_names)
Convert a goal into a DIMACS formatted string. The goal must be in CNF. You can convert a goal to CNF...
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(Z3_context c, Z3_ast a, unsigned i)
Return i'th no_pattern.
double Z3_API Z3_stats_get_double_value(Z3_context c, Z3_stats s, unsigned idx)
Return the double value of the given statistical data.
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.
unsigned Z3_API Z3_goal_depth(Z3_context c, Z3_goal g)
Return the depth of the given goal. It tracks how many transformations were applied to it.
Z3_string Z3_API Z3_get_symbol_string(Z3_context c, Z3_symbol s)
Return the symbol name.
Z3_ast Z3_API Z3_pattern_to_ast(Z3_context c, Z3_pattern p)
Convert a Z3_pattern into Z3_ast. This is just type casting.
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.
void Z3_API Z3_mk_datatypes(Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])
Create mutually recursive datatypes.
unsigned Z3_API Z3_func_interp_get_arity(Z3_context c, Z3_func_interp f)
Return the arity (number of arguments) of the given function interpretation.
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])
Create a enumeration sort.
unsigned Z3_API Z3_get_bv_sort_size(Z3_context c, Z3_sort t)
Return the size of the given bit-vector sort.
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.
void Z3_API Z3_ast_vector_dec_ref(Z3_context c, Z3_ast_vector v)
Decrement the reference counter of the given AST vector.
void Z3_API Z3_func_interp_dec_ref(Z3_context c, Z3_func_interp f)
Decrement the reference counter of the given Z3_func_interp object.
void Z3_API Z3_params_inc_ref(Z3_context c, Z3_params p)
Increment the reference counter of the given parameter set.
void Z3_API Z3_set_error_handler(Z3_context c, Z3_error_handler h)
Register a Z3 error handler.
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).
Z3_config Z3_API Z3_mk_config(void)
Create a configuration object for the Z3 context object.
void Z3_API Z3_set_param_value(Z3_config c, Z3_string param_id, Z3_string param_value)
Set a configuration parameter.
Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz)
Create a bit-vector type of the given size.
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.
void Z3_API Z3_ast_map_dec_ref(Z3_context c, Z3_ast_map m)
Decrement the reference counter of the given AST map.
Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p)
Convert a parameter set into a string. This function is mainly used for printing the contents of a pa...
Z3_param_descrs Z3_API Z3_get_global_param_descrs(Z3_context c)
Retrieve description of global parameters.
Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)
Return the i-th constant in the given model.
Z3_ast Z3_API Z3_translate(Z3_context source, Z3_ast a, Z3_context target)
Translate/Copy the AST a from context source to context target. AST a must have been created using co...
Z3_sort Z3_API Z3_get_range(Z3_context c, Z3_func_decl d)
Return the range of the given declaration.
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.
Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s)
Return the finite set of distinct values that represent the interpretation for sort s.
void Z3_API Z3_func_entry_dec_ref(Z3_context c, Z3_func_entry e)
Decrement the reference counter of the given Z3_func_entry object.
unsigned Z3_API Z3_stats_size(Z3_context c, Z3_stats s)
Return the number of statistical data in s.
void Z3_API Z3_append_log(Z3_string string)
Append user-defined string to interaction log.
Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a)
Return body of quantifier.
void Z3_API Z3_param_descrs_dec_ref(Z3_context c, Z3_param_descrs p)
Decrement the reference counter of the given parameter description set.
Z3_model Z3_API Z3_mk_model(Z3_context c)
Create a fresh model object. It has reference count 0.
Z3_symbol Z3_API Z3_get_decl_name(Z3_context c, Z3_func_decl d)
Return the constant declaration name as a symbol.
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.
Z3_string Z3_API Z3_stats_get_key(Z3_context c, Z3_stats s, unsigned idx)
Return the key (a string) for a particular statistical data.
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.
Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a)
Return the kind of the given AST.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).
Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst)
translate model from context c to context dst.
void Z3_API Z3_get_version(unsigned *major, unsigned *minor, unsigned *build_number, unsigned *revision_number)
Return Z3 version number information.
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.
void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)
Assert a constraint into the solver.
unsigned Z3_API Z3_ast_vector_size(Z3_context c, Z3_ast_vector v)
Return the size of the given AST vector.
unsigned Z3_API Z3_get_quantifier_weight(Z3_context c, Z3_ast a)
Obtain weight of quantifier.
bool Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast *v)
Evaluate the AST node t in the given model. Return true if succeeded, and store the result in v.
unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)
Return the number of backtracking points.
Z3_sort Z3_API Z3_get_array_sort_range(Z3_context c, Z3_sort t)
Return the range of the given array sort.
void Z3_API Z3_del_constructor_list(Z3_context c, Z3_constructor_list clist)
Reclaim memory allocated for constructor list.
Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty)
Create a variable.
unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a)
Return the number of argument of an application. If t is an constant, then the number of arguments is...
Z3_ast Z3_API Z3_func_entry_get_arg(Z3_context c, Z3_func_entry e, unsigned i)
Return an argument of a Z3_func_entry object.
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.
void Z3_API Z3_ast_vector_inc_ref(Z3_context c, Z3_ast_vector v)
Increment the reference counter of the given AST vector.
unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)
Return the number of function interpretations in the given model.
void Z3_API Z3_dec_ref(Z3_context c, Z3_ast a)
Decrement the reference counter of the given AST. The context c should have been created using Z3_mk_...
Z3_ast_vector Z3_API Z3_mk_ast_vector(Z3_context c)
Return an empty AST vector.
Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.
Z3_goal_prec Z3_API Z3_goal_precision(Z3_context c, Z3_goal g)
Return the "precision" of the given goal. Goals can be transformed using over and under approximation...
void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)
Backtrack n backtracking points.
void Z3_API Z3_ast_map_erase(Z3_context c, Z3_ast_map m, Z3_ast k)
Erase a key from the map.
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.
unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a)
Return index of de-Bruijn bound variable.
Z3_goal Z3_API Z3_mk_goal(Z3_context c, bool models, bool unsat_cores, bool proofs)
Create a goal (aka problem). A goal is essentially a set of formulas, that can be solved and/or trans...
double Z3_API Z3_get_decl_double_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the double value associated with an double parameter.
unsigned Z3_API Z3_get_ast_hash(Z3_context c, Z3_ast a)
Return a hash code for the given AST. The hash code is structural but two different AST objects can m...
Z3_symbol Z3_API Z3_get_sort_name(Z3_context c, Z3_sort d)
Return the sort name as a symbol.
void Z3_API Z3_params_validate(Z3_context c, Z3_params p, Z3_param_descrs d)
Validate the parameter set p against the parameter description set d.
Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(Z3_context c, Z3_sort t, unsigned idx)
Return idx'th recognizer.
void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.
Z3_string Z3_API Z3_get_decl_rational_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the rational value, as a string, associated with a rational parameter.
void Z3_API Z3_ast_vector_push(Z3_context c, Z3_ast_vector v, Z3_ast a)
Add the AST a in the end of the AST vector v. The size of v is increased by one.
bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2)
Compare terms.
bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a)
Determine if an ast is a universal quantifier.
Z3_ast_map Z3_API Z3_mk_ast_map(Z3_context c)
Return an empty mapping from AST to AST.
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.
Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)
Map f on the argument arrays.
Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty)
Declare and create a constant.
Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s)
Create a Z3 symbol using a C string.
void Z3_API Z3_param_descrs_inc_ref(Z3_context c, Z3_param_descrs p)
Increment the reference counter of the given parameter description set.
void Z3_API Z3_stats_dec_ref(Z3_context c, Z3_stats s)
Decrement the reference counter of the given statistics object.
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create array extensionality index given two arrays with the same sort. The meaning is given by the ax...
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_sort_to_ast(Z3_context c, Z3_sort s)
Convert a Z3_sort into Z3_ast. This is just type casting.
Z3_func_entry Z3_API Z3_func_interp_get_entry(Z3_context c, Z3_func_interp f, unsigned i)
Return a "point" of the given function interpretation. It represents the value of f in a particular p...
Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a recursive function.
unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t)
Return a unique identifier for t. The identifier is unique up to structural equality....
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
unsigned Z3_API Z3_get_quantifier_num_bound(Z3_context c, Z3_ast a)
Return number of bound variables of quantifier.
Z3_sort Z3_API Z3_get_decl_sort_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the sort value associated with a sort parameter.
Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])
Create list of constructors.
Z3_ast Z3_API Z3_mk_app(Z3_context c, Z3_func_decl d, unsigned num_args, Z3_ast const args[])
Create a constant or function application.
Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t)
Return the sort kind (e.g., array, tuple, int, bool, etc).
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.
Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)
n-ary Array update.
Z3_sort Z3_API Z3_get_domain(Z3_context c, Z3_func_decl d, unsigned i)
Return the sort of the i-th parameter of the given function declaration.
Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c)
Create the Boolean type.
void Z3_API Z3_params_set_symbol(Z3_context c, Z3_params p, Z3_symbol k, Z3_symbol v)
Add a symbol parameter k with value v to the parameter set p.
Z3_ast Z3_API Z3_ast_vector_get(Z3_context c, Z3_ast_vector v, unsigned i)
Return the AST at position i in the AST vector v.
Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a)
Convert an AST into a FUNC_DECL_AST. This is just type casting.
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.
Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.
Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(Z3_context c, Z3_ast a, unsigned i)
Return i'th pattern.
void Z3_API Z3_goal_dec_ref(Z3_context c, Z3_goal g)
Decrement the reference counter of the given goal.
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].
Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range)
Create an array type.
void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m)
Increment the reference counter of the given model.
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.
Z3_sort Z3_API Z3_mk_type_variable(Z3_context c, Z3_symbol s)
Create a type variable.
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a decimal string of a numeric constant term.
void Z3_API Z3_func_interp_add_entry(Z3_context c, Z3_func_interp fi, Z3_ast_vector args, Z3_ast value)
add a function entry to a function interpretation.
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.
Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a)
Return numeral value, as a binary string of a numeric constant term.
Z3_sort Z3_API Z3_get_quantifier_bound_sort(Z3_context c, Z3_ast a, unsigned i)
Return sort of the i'th bound variable.
void Z3_API Z3_disable_trace(Z3_string tag)
Disable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.
Z3_ast Z3_API Z3_goal_formula(Z3_context c, Z3_goal g, unsigned idx)
Return a formula from the given goal.
Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i)
Create a Z3 symbol using an integer.
unsigned Z3_API Z3_func_interp_get_num_entries(Z3_context c, Z3_func_interp f)
Return the number of entries in the given function interpretation.
void Z3_API Z3_ast_map_insert(Z3_context c, Z3_ast_map m, Z3_ast k, Z3_ast v)
Store/Replace a new key, value pair in the given map.
Z3_constructor Z3_API Z3_mk_constructor(Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort const sorts[], unsigned sort_refs[])
Create a constructor.
Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g)
Convert a goal into a string.
bool Z3_API Z3_is_eq_sort(Z3_context c, Z3_sort s1, Z3_sort s2)
compare sorts.
void Z3_API Z3_del_config(Z3_config c)
Delete the given configuration object.
double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a)
Return numeral as a double.
void Z3_API Z3_inc_ref(Z3_context c, Z3_ast a)
Increment the reference counter of the given AST. The context c should have been created using Z3_mk_...
Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1)
Coerce a real to an integer.
Z3_func_interp Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f)
Return the interpretation of the function f in the model m. Return NULL, if the model does not assign...
void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)
Increment the reference counter of the given solver.
Z3_symbol Z3_API Z3_get_quantifier_id(Z3_context c, Z3_ast a)
Obtain id of quantifier.
Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the right t2 times.
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(Z3_context c, Z3_sort t, unsigned idx_c, unsigned idx_a)
Return idx_a'th accessor for the idx_c'th constructor.
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.
void Z3_API Z3_ast_map_reset(Z3_context c, Z3_ast_map m)
Remove all keys from the given map.
void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)
Remove all assertions from the solver.
bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a)
Return true if the given AST is a real algebraic number.
BitVecVal(val, bv, ctx=None)
_coerce_exprs(a, b, ctx=None)
_ctx_from_ast_args(*args)
_to_func_decl_ref(a, ctx)
_valid_accessor(acc)
Datatypes.
BitVec(name, bv, ctx=None)
RecAddDefinition(f, args, body)
DeclareTypeVar(name, ctx=None)
_z3_check_cint_overflow(n, name)
TupleSort(name, sorts, ctx=None)
_coerce_expr_list(alist, ctx=None)
RealVector(prefix, sz, ctx=None)
SortRef _sort(Context ctx, Any a)
ExprRef RealVar(int idx, ctx=None)
bool is_arith_sort(Any s)
BitVecs(names, bv, ctx=None)
_check_same_sort(a, b, ctx=None)
BoolVector(prefix, sz, ctx=None)
FreshConst(sort, prefix="c")
EnumSort(name, values, ctx=None)
simplify(a, *arguments, **keywords)
Utils.
BV2Int(a, is_signed=False)
FreshInt(prefix="x", ctx=None)
_to_func_decl_array(args)
args2params(arguments, keywords, ctx=None)
Cond(p, t1, t2, ctx=None)
RealVarVector(int n, ctx=None)
bool eq(AstRef a, AstRef b)
FreshReal(prefix="b", ctx=None)
_reduce(func, sequence, initial)
ExprRef Var(int idx, SortRef s)
BVAddNoOverflow(a, b, signed)
FreshBool(prefix="b", ctx=None)
_ctx_from_ast_arg_list(args, default_ctx=None)
IntVector(prefix, sz, ctx=None)
DisjointSum(name, sorts, ctx=None)
Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
int _ast_kind(Context ctx, Any a)
DatatypeSort(name, params=None, ctx=None)
BVSubNoUnderflow(a, b, signed)
SortRef DeclareSort(name, ctx=None)
BVMulNoOverflow(a, b, signed)
_mk_quantifier(is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])