Functions | |
def | z3_debug () |
def | enable_trace (msg) |
def | disable_trace (msg) |
def | get_version_string () |
def | get_version () |
def | get_full_version () |
def | open_log (fname) |
def | append_log (s) |
def | to_symbol (s, ctx=None) |
def | z3_error_handler (c, e) |
def | main_ctx () |
def | get_ctx (ctx) |
def | set_param (*args, **kws) |
def | reset_params () |
def | set_option (*args, **kws) |
def | get_param (name) |
def | is_ast (a) |
def | eq (a, b) |
def | is_sort (s) |
def | DeclareSort (name, ctx=None) |
def | is_func_decl (a) |
def | Function (name, *sig) |
def | FreshFunction (*sig) |
def | RecFunction (name, *sig) |
def | RecAddDefinition (f, args, body) |
def | deserialize (st) |
def | is_expr (a) |
def | is_app (a) |
def | is_const (a) |
def | is_var (a) |
def | get_var_index (a) |
def | is_app_of (a, k) |
def | If (a, b, c, ctx=None) |
def | Distinct (*args) |
def | Const (name, sort) |
def | Consts (names, sort) |
def | FreshConst (sort, prefix="c") |
def | Var (idx, s) |
def | RealVar (idx, ctx=None) |
def | RealVarVector (n, ctx=None) |
def | is_bool (a) |
def | is_true (a) |
def | is_false (a) |
def | is_and (a) |
def | is_or (a) |
def | is_implies (a) |
def | is_not (a) |
def | is_eq (a) |
def | is_distinct (a) |
def | BoolSort (ctx=None) |
def | BoolVal (val, ctx=None) |
def | Bool (name, ctx=None) |
def | Bools (names, ctx=None) |
def | BoolVector (prefix, sz, ctx=None) |
def | FreshBool (prefix="b", ctx=None) |
def | Implies (a, b, ctx=None) |
def | Xor (a, b, ctx=None) |
def | Not (a, ctx=None) |
def | mk_not (a) |
def | And (*args) |
def | Or (*args) |
def | is_pattern (a) |
def | MultiPattern (*args) |
def | is_quantifier (a) |
def | ForAll (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) |
def | Exists (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) |
def | Lambda (vs, body) |
def | is_arith_sort (s) |
def | is_arith (a) |
def | is_int (a) |
def | is_real (a) |
def | is_int_value (a) |
def | is_rational_value (a) |
def | is_algebraic_value (a) |
def | is_add (a) |
def | is_mul (a) |
def | is_sub (a) |
def | is_div (a) |
def | is_idiv (a) |
def | is_mod (a) |
def | is_le (a) |
def | is_lt (a) |
def | is_ge (a) |
def | is_gt (a) |
def | is_is_int (a) |
def | is_to_real (a) |
def | is_to_int (a) |
def | IntSort (ctx=None) |
def | RealSort (ctx=None) |
def | IntVal (val, ctx=None) |
def | RealVal (val, ctx=None) |
def | RatVal (a, b, ctx=None) |
def | Q (a, b, ctx=None) |
def | Int (name, ctx=None) |
def | Ints (names, ctx=None) |
def | IntVector (prefix, sz, ctx=None) |
def | FreshInt (prefix="x", ctx=None) |
def | Real (name, ctx=None) |
def | Reals (names, ctx=None) |
def | RealVector (prefix, sz, ctx=None) |
def | FreshReal (prefix="b", ctx=None) |
def | ToReal (a) |
def | ToInt (a) |
def | IsInt (a) |
def | Sqrt (a, ctx=None) |
def | Cbrt (a, ctx=None) |
def | is_bv_sort (s) |
def | is_bv (a) |
def | is_bv_value (a) |
def | BV2Int (a, is_signed=False) |
def | Int2BV (a, num_bits) |
def | BitVecSort (sz, ctx=None) |
def | BitVecVal (val, bv, ctx=None) |
def | BitVec (name, bv, ctx=None) |
def | BitVecs (names, bv, ctx=None) |
def | Concat (*args) |
def | Extract (high, low, a) |
def | ULE (a, b) |
def | ULT (a, b) |
def | UGE (a, b) |
def | UGT (a, b) |
def | UDiv (a, b) |
def | URem (a, b) |
def | SRem (a, b) |
def | LShR (a, b) |
def | RotateLeft (a, b) |
def | RotateRight (a, b) |
def | SignExt (n, a) |
def | ZeroExt (n, a) |
def | RepeatBitVec (n, a) |
def | BVRedAnd (a) |
def | BVRedOr (a) |
def | BVAddNoOverflow (a, b, signed) |
def | BVAddNoUnderflow (a, b) |
def | BVSubNoOverflow (a, b) |
def | BVSubNoUnderflow (a, b, signed) |
def | BVSDivNoOverflow (a, b) |
def | BVSNegNoOverflow (a) |
def | BVMulNoOverflow (a, b, signed) |
def | BVMulNoUnderflow (a, b) |
def | is_array_sort (a) |
def | is_array (a) |
def | is_const_array (a) |
def | is_K (a) |
def | is_map (a) |
def | is_default (a) |
def | get_map_func (a) |
def | ArraySort (*sig) |
def | Array (name, *sorts) |
def | Update (a, *args) |
def | Default (a) |
def | Store (a, *args) |
def | Select (a, *args) |
def | Map (f, *args) |
def | K (dom, v) |
def | Ext (a, b) |
def | SetHasSize (a, k) |
def | is_select (a) |
def | is_store (a) |
def | SetSort (s) |
Sets. More... | |
def | EmptySet (s) |
def | FullSet (s) |
def | SetUnion (*args) |
def | SetIntersect (*args) |
def | SetAdd (s, e) |
def | SetDel (s, e) |
def | SetComplement (s) |
def | SetDifference (a, b) |
def | IsMember (e, s) |
def | IsSubset (a, b) |
def | CreateDatatypes (*ds) |
def | DatatypeSort (name, ctx=None) |
def | TupleSort (name, sorts, ctx=None) |
def | DisjointSum (name, sorts, ctx=None) |
def | EnumSort (name, values, ctx=None) |
def | args2params (arguments, keywords, ctx=None) |
def | Model (ctx=None) |
def | is_as_array (n) |
def | get_as_array_func (n) |
def | SolverFor (logic, ctx=None, logFile=None) |
def | SimpleSolver (ctx=None, logFile=None) |
def | FiniteDomainSort (name, sz, ctx=None) |
def | is_finite_domain_sort (s) |
def | is_finite_domain (a) |
def | FiniteDomainVal (val, sort, ctx=None) |
def | is_finite_domain_value (a) |
def | AndThen (*ts, **ks) |
def | Then (*ts, **ks) |
def | OrElse (*ts, **ks) |
def | ParOr (*ts, **ks) |
def | ParThen (t1, t2, ctx=None) |
def | ParAndThen (t1, t2, ctx=None) |
def | With (t, *args, **keys) |
def | WithParams (t, p) |
def | Repeat (t, max=4294967295, ctx=None) |
def | TryFor (t, ms, ctx=None) |
def | tactics (ctx=None) |
def | tactic_description (name, ctx=None) |
def | describe_tactics () |
def | is_probe (p) |
def | probes (ctx=None) |
def | probe_description (name, ctx=None) |
def | describe_probes () |
def | FailIf (p, ctx=None) |
def | When (p, t, ctx=None) |
def | Cond (p, t1, t2, ctx=None) |
def | simplify (a, *arguments, **keywords) |
Utils. More... | |
def | help_simplify () |
def | simplify_param_descrs () |
def | substitute (t, *m) |
def | substitute_vars (t, *m) |
def | substitute_funs (t, *m) |
def | Sum (*args) |
def | Product (*args) |
def | Abs (arg) |
def | AtMost (*args) |
def | AtLeast (*args) |
def | PbLe (args, k) |
def | PbGe (args, k) |
def | PbEq (args, k, ctx=None) |
def | solve (*args, **keywords) |
def | solve_using (s, *args, **keywords) |
def | prove (claim, show=False, **keywords) |
def | parse_smt2_string (s, sorts={}, decls={}, ctx=None) |
def | parse_smt2_file (f, sorts={}, decls={}, ctx=None) |
def | get_default_rounding_mode (ctx=None) |
def | set_default_rounding_mode (rm, ctx=None) |
def | get_default_fp_sort (ctx=None) |
def | set_default_fp_sort (ebits, sbits, ctx=None) |
def | Float16 (ctx=None) |
def | FloatHalf (ctx=None) |
def | Float32 (ctx=None) |
def | FloatSingle (ctx=None) |
def | Float64 (ctx=None) |
def | FloatDouble (ctx=None) |
def | Float128 (ctx=None) |
def | FloatQuadruple (ctx=None) |
def | is_fp_sort (s) |
def | is_fprm_sort (s) |
def | RoundNearestTiesToEven (ctx=None) |
def | RNE (ctx=None) |
def | RoundNearestTiesToAway (ctx=None) |
def | RNA (ctx=None) |
def | RoundTowardPositive (ctx=None) |
def | RTP (ctx=None) |
def | RoundTowardNegative (ctx=None) |
def | RTN (ctx=None) |
def | RoundTowardZero (ctx=None) |
def | RTZ (ctx=None) |
def | is_fprm (a) |
def | is_fprm_value (a) |
def | is_fp (a) |
def | is_fp_value (a) |
def | FPSort (ebits, sbits, ctx=None) |
def | fpNaN (s) |
def | fpPlusInfinity (s) |
def | fpMinusInfinity (s) |
def | fpInfinity (s, negative) |
def | fpPlusZero (s) |
def | fpMinusZero (s) |
def | fpZero (s, negative) |
def | FPVal (sig, exp=None, fps=None, ctx=None) |
def | FP (name, fpsort, ctx=None) |
def | FPs (names, fpsort, ctx=None) |
def | fpAbs (a, ctx=None) |
def | fpNeg (a, ctx=None) |
def | fpAdd (rm, a, b, ctx=None) |
def | fpSub (rm, a, b, ctx=None) |
def | fpMul (rm, a, b, ctx=None) |
def | fpDiv (rm, a, b, ctx=None) |
def | fpRem (a, b, ctx=None) |
def | fpMin (a, b, ctx=None) |
def | fpMax (a, b, ctx=None) |
def | fpFMA (rm, a, b, c, ctx=None) |
def | fpSqrt (rm, a, ctx=None) |
def | fpRoundToIntegral (rm, a, ctx=None) |
def | fpIsNaN (a, ctx=None) |
def | fpIsInf (a, ctx=None) |
def | fpIsZero (a, ctx=None) |
def | fpIsNormal (a, ctx=None) |
def | fpIsSubnormal (a, ctx=None) |
def | fpIsNegative (a, ctx=None) |
def | fpIsPositive (a, ctx=None) |
def | fpLT (a, b, ctx=None) |
def | fpLEQ (a, b, ctx=None) |
def | fpGT (a, b, ctx=None) |
def | fpGEQ (a, b, ctx=None) |
def | fpEQ (a, b, ctx=None) |
def | fpNEQ (a, b, ctx=None) |
def | fpFP (sgn, exp, sig, ctx=None) |
def | fpToFP (a1, a2=None, a3=None, ctx=None) |
def | fpBVToFP (v, sort, ctx=None) |
def | fpFPToFP (rm, v, sort, ctx=None) |
def | fpRealToFP (rm, v, sort, ctx=None) |
def | fpSignedToFP (rm, v, sort, ctx=None) |
def | fpUnsignedToFP (rm, v, sort, ctx=None) |
def | fpToFPUnsigned (rm, x, s, ctx=None) |
def | fpToSBV (rm, x, s, ctx=None) |
def | fpToUBV (rm, x, s, ctx=None) |
def | fpToReal (x, ctx=None) |
def | fpToIEEEBV (x, ctx=None) |
def | StringSort (ctx=None) |
def | CharSort (ctx=None) |
def | SeqSort (s) |
def | CharVal (ch, ctx=None) |
def | CharFromBv (ch, ctx=None) |
def | CharToBv (ch, ctx=None) |
def | CharToInt (ch, ctx=None) |
def | CharIsDigit (ch, ctx=None) |
def | is_seq (a) |
def | is_string (a) |
def | is_string_value (a) |
def | StringVal (s, ctx=None) |
def | String (name, ctx=None) |
def | Strings (names, ctx=None) |
def | SubString (s, offset, length) |
def | SubSeq (s, offset, length) |
def | Empty (s) |
def | Full (s) |
def | Unit (a) |
def | PrefixOf (a, b) |
def | SuffixOf (a, b) |
def | Contains (a, b) |
def | Replace (s, src, dst) |
def | IndexOf (s, substr, offset=None) |
def | LastIndexOf (s, substr) |
def | Length (s) |
def | StrToInt (s) |
def | IntToStr (s) |
def | StrToCode (s) |
def | StrFromCode (c) |
def | Re (s, ctx=None) |
def | ReSort (s) |
def | is_re (s) |
def | InRe (s, re) |
def | Union (*args) |
def | Intersect (*args) |
def | Plus (re) |
def | Option (re) |
def | Complement (re) |
def | Star (re) |
def | Loop (re, lo, hi=0) |
def | Range (lo, hi, ctx=None) |
def | Diff (a, b, ctx=None) |
def | AllChar (regex_sort, ctx=None) |
def | PartialOrder (a, index) |
def | LinearOrder (a, index) |
def | TreeOrder (a, index) |
def | PiecewiseLinearOrder (a, index) |
def | TransitiveClosure (f) |
def | to_Ast (ptr) |
def | to_ContextObj (ptr) |
def | to_AstVectorObj (ptr) |
def | on_clause_eh (ctx, p, clause) |
def | ensure_prop_closures () |
def | user_prop_push (ctx, cb) |
def | user_prop_pop (ctx, cb, num_scopes) |
def | user_prop_fresh (ctx, _new_ctx) |
def | user_prop_fixed (ctx, cb, id, value) |
def | user_prop_created (ctx, cb, id) |
def | user_prop_final (ctx, cb) |
def | user_prop_eq (ctx, cb, x, y) |
def | user_prop_diseq (ctx, cb, x, y) |
def | user_prop_decide (ctx, cb, t_ref, idx_ref, phase_ref) |
def | PropagateFunction (name, *sig) |
Variables | |
Z3_DEBUG = __debug__ | |
sat = CheckSatResult(Z3_L_TRUE) | |
unsat = CheckSatResult(Z3_L_FALSE) | |
unknown = CheckSatResult(Z3_L_UNDEF) | |
def z3py.Abs | ( | arg | ) |
def z3py.AllChar | ( | regex_sort, | |
ctx = None |
|||
) |
def z3py.And | ( | * | args | ) |
Create a Z3 and-expression or and-probe. >>> p, q, r = Bools('p q r') >>> And(p, q, r) And(p, q, r) >>> P = BoolVector('p', 5) >>> And(P) And(p__0, p__1, p__2, p__3, p__4)
Definition at line 1849 of file z3py.py.
Referenced by Fixedpoint.add_rule(), Goal.as_expr(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), and Fixedpoint.update_rule().
def z3py.AndThen | ( | * | ts, |
** | ks | ||
) |
Return a tactic that applies the tactics in `*ts` in sequence. >>> x, y = Ints('x y') >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs')) >>> t(And(x == 0, y > x + 1)) [[Not(y <= 1)]] >>> t(And(x == 0, y > x + 1)).as_expr() Not(y <= 1)
Definition at line 8297 of file z3py.py.
Referenced by Then().
def z3py.append_log | ( | s | ) |
def z3py.args2params | ( | arguments, | |
keywords, | |||
ctx = None |
|||
) |
Convert python arguments into a Z3_params object. A ':' is added to the keywords, and '_' is replaced with '-' >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True}) (params model true relevancy 2 elim_and true)
Definition at line 5466 of file z3py.py.
Referenced by Tactic.apply(), Solver.set(), Fixedpoint.set(), Optimize.set(), simplify(), and With().
def z3py.Array | ( | name, | |
* | sorts | ||
) |
def z3py.ArraySort | ( | * | sig | ) |
Return the Z3 array sort with the given domain and range sorts. >>> A = ArraySort(IntSort(), BoolSort()) >>> A Array(Int, Bool) >>> A.domain() Int >>> A.range() Bool >>> AA = ArraySort(IntSort(), A) >>> AA Array(Int, Array(Int, Bool))
Definition at line 4700 of file z3py.py.
Referenced by Array(), Context.MkArraySort(), and SetSort().
def z3py.AtLeast | ( | * | args | ) |
def z3py.AtMost | ( | * | args | ) |
def z3py.BitVec | ( | name, | |
bv, | |||
ctx = None |
|||
) |
Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort. If `ctx=None`, then the global context is used. >>> x = BitVec('x', 16) >>> is_bv(x) True >>> x.size() 16 >>> x.sort() BitVec(16) >>> word = BitVecSort(16) >>> x2 = BitVec('x', word) >>> eq(x, x2) True
Definition at line 4037 of file z3py.py.
Referenced by BitVecs().
def z3py.BitVecs | ( | names, | |
bv, | |||
ctx = None |
|||
) |
def z3py.BitVecSort | ( | sz, | |
ctx = None |
|||
) |
Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used. >>> Byte = BitVecSort(8) >>> Word = BitVecSort(16) >>> Byte BitVec(8) >>> x = Const('x', Byte) >>> eq(x, BitVec('x', 8)) True
Definition at line 4005 of file z3py.py.
Referenced by BitVec(), BitVecVal(), Context.mkBitVecSort(), and Context.MkBitVecSort().
def z3py.BitVecVal | ( | val, | |
bv, | |||
ctx = None |
|||
) |
Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used. >>> v = BitVecVal(10, 32) >>> v 10 >>> print("0x%.8x" % v.as_long()) 0x0000000a
def z3py.Bool | ( | name, | |
ctx = None |
|||
) |
Return a Boolean constant named `name`. If `ctx=None`, then the global context is used. >>> p = Bool('p') >>> q = Bool('q') >>> And(p, q) And(p, q)
Definition at line 1728 of file z3py.py.
Referenced by Solver.assert_and_track(), Optimize.assert_and_track(), Bools(), and BoolVector().
def z3py.Bools | ( | names, | |
ctx = None |
|||
) |
def z3py.BoolSort | ( | ctx = None | ) |
Return the Boolean Z3 sort. If `ctx=None`, then the global context is used. >>> BoolSort() Bool >>> p = Const('p', BoolSort()) >>> is_bool(p) True >>> r = Function('r', IntSort(), IntSort(), BoolSort()) >>> r(0, 1) r(0, 1) >>> is_bool(r(0, 1)) True
Definition at line 1691 of file z3py.py.
Referenced by Goal.assert_exprs(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Bool(), Solver.check(), FreshBool(), Context.getBoolSort(), If(), Implies(), Context.mkBoolSort(), Not(), SetSort(), QuantifierRef.sort(), and Xor().
def z3py.BoolVal | ( | val, | |
ctx = None |
|||
) |
Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used. >>> BoolVal(True) True >>> is_true(BoolVal(True)) True >>> is_true(True) False >>> is_false(BoolVal(False)) True
Definition at line 1709 of file z3py.py.
Referenced by Goal.as_expr(), ApplyResult.as_expr(), BoolSortRef.cast(), UserPropagateBase.conflict(), AlgebraicNumRef.index(), is_quantifier(), and Solver.to_smt2().
def z3py.BoolVector | ( | prefix, | |
sz, | |||
ctx = None |
|||
) |
def z3py.BV2Int | ( | a, | |
is_signed = False |
|||
) |
Return the Z3 expression BV2Int(a). >>> b = BitVec('b', 3) >>> BV2Int(b).sort() Int >>> x = Int('x') >>> x > BV2Int(b) x > BV2Int(b) >>> x > BV2Int(b, is_signed=False) x > BV2Int(b) >>> x > BV2Int(b, is_signed=True) x > If(b < 0, BV2Int(b) - 8, BV2Int(b)) >>> solve(x > BV2Int(b), b == 1, x < 3) [x = 2, b = 1]
Definition at line 3973 of file z3py.py.
def z3py.BVAddNoOverflow | ( | a, | |
b, | |||
signed | |||
) |
def z3py.BVAddNoUnderflow | ( | a, | |
b | |||
) |
def z3py.BVMulNoOverflow | ( | a, | |
b, | |||
signed | |||
) |
A predicate the determines that bit-vector multiplication does not overflow
Definition at line 4501 of file z3py.py.
def z3py.BVMulNoUnderflow | ( | a, | |
b | |||
) |
A predicate the determines that bit-vector signed multiplication does not underflow
Definition at line 4508 of file z3py.py.
def z3py.BVRedAnd | ( | a | ) |
def z3py.BVRedOr | ( | a | ) |
def z3py.BVSDivNoOverflow | ( | a, | |
b | |||
) |
def z3py.BVSNegNoOverflow | ( | a | ) |
def z3py.BVSubNoOverflow | ( | a, | |
b | |||
) |
def z3py.BVSubNoUnderflow | ( | a, | |
b, | |||
signed | |||
) |
def z3py.Cbrt | ( | a, | |
ctx = None |
|||
) |
def z3py.CharFromBv | ( | ch, | |
ctx = None |
|||
) |
def z3py.CharSort | ( | ctx = None | ) |
Create a character sort >>> ch = CharSort() >>> print(ch) Char
Definition at line 10755 of file z3py.py.
Referenced by Context.mkCharSort().
def z3py.CharVal | ( | ch, | |
ctx = None |
|||
) |
def z3py.Complement | ( | re | ) |
def z3py.Concat | ( | * | args | ) |
Create a Z3 bit-vector concatenation expression. >>> v = BitVecVal(1, 4) >>> Concat(v, v+1, v) Concat(Concat(1, 1 + 1), 1) >>> simplify(Concat(v, v+1, v)) 289 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long()) 121
Definition at line 4082 of file z3py.py.
Referenced by SeqRef.__add__(), and SeqRef.__radd__().
def z3py.Cond | ( | p, | |
t1, | |||
t2, | |||
ctx = None |
|||
) |
Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise. >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
Definition at line 8754 of file z3py.py.
Referenced by If().
def z3py.Const | ( | name, | |
sort | |||
) |
def z3py.Consts | ( | names, | |
sort | |||
) |
def z3py.Contains | ( | a, | |
b | |||
) |
Check if 'a' contains 'b' >>> s1 = Contains("abc", "ab") >>> simplify(s1) True >>> s2 = Contains("abc", "bc") >>> simplify(s2) True >>> x, y, z = Strings('x y z') >>> s3 = Contains(Concat(x,y,z), y) >>> simplify(s3) True
Definition at line 11025 of file z3py.py.
def z3py.CreateDatatypes | ( | * | ds | ) |
Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects. In the following example we define a Tree-List using two mutually recursive datatypes. >>> TreeList = Datatype('TreeList') >>> Tree = Datatype('Tree') >>> # Tree has two constructors: leaf and node >>> Tree.declare('leaf', ('val', IntSort())) >>> # a node contains a list of trees >>> Tree.declare('node', ('children', TreeList)) >>> TreeList.declare('nil') >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList)) >>> Tree, TreeList = CreateDatatypes(Tree, TreeList) >>> Tree.val(Tree.leaf(10)) val(leaf(10)) >>> simplify(Tree.val(Tree.leaf(10))) 10 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil))) >>> n1 node(cons(leaf(10), cons(leaf(20), nil))) >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil)) >>> simplify(n2 == n1) False >>> simplify(TreeList.car(Tree.children(n2)) == n1) True
Definition at line 5158 of file z3py.py.
Referenced by Datatype.create().
def z3py.DatatypeSort | ( | name, | |
ctx = None |
|||
) |
Create a reference to a sort that was declared, or will be declared, as a recursive datatype
Definition at line 5358 of file z3py.py.
Referenced by Context.MkDatatypeSort(), and Context.MkDatatypeSorts().
def z3py.DeclareSort | ( | name, | |
ctx = None |
|||
) |
Create a new uninterpreted sort named `name`. If `ctx=None`, then the new sort is declared in the global Z3Py context. >>> A = DeclareSort('A') >>> a = Const('a', A) >>> b = Const('b', A) >>> a.sort() == A True >>> b.sort() == A True >>> a == b a == b
Definition at line 693 of file z3py.py.
def z3py.Default | ( | a | ) |
def z3py.describe_probes | ( | ) |
def z3py.describe_tactics | ( | ) |
def z3py.deserialize | ( | st | ) |
inverse function to the serialize method on ExprRef. It is made available to make it easier for users to serialize expressions back and forth between strings. Solvers can be serialized using the 'sexpr()' method.
def z3py.Diff | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.disable_trace | ( | msg | ) |
def z3py.DisjointSum | ( | name, | |
sorts, | |||
ctx = None |
|||
) |
Create a named tagged union sort base on a set of underlying sorts Example: >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
def z3py.Distinct | ( | * | args | ) |
Create a Z3 distinct expression. >>> x = Int('x') >>> y = Int('y') >>> Distinct(x, y) x != y >>> z = Int('z') >>> Distinct(x, y, z) Distinct(x, y, z) >>> simplify(Distinct(x, y, z)) Distinct(x, y, z) >>> simplify(Distinct(x, y, z), blast_distinct=True) And(Not(x == y), Not(x == z), Not(y == z))
Definition at line 1404 of file z3py.py.
def z3py.Empty | ( | s | ) |
Create the empty sequence of the given sort >>> e = Empty(StringSort()) >>> e2 = StringVal("") >>> print(e.eq(e2)) True >>> e3 = Empty(SeqSort(IntSort())) >>> print(e3) Empty(Seq(Int)) >>> e4 = Empty(ReSort(SeqSort(IntSort()))) >>> print(e4) Empty(ReSort(Seq(Int)))
Definition at line 10955 of file z3py.py.
def z3py.EmptySet | ( | s | ) |
def z3py.enable_trace | ( | msg | ) |
def z3py.ensure_prop_closures | ( | ) |
def z3py.EnumSort | ( | name, | |
values, | |||
ctx = None |
|||
) |
Return a new enumeration sort named `name` containing the given values. The result is a pair (sort, list of constants). Example: >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
Definition at line 5387 of file z3py.py.
Referenced by Context.MkEnumSort().
def z3py.eq | ( | a, | |
b | |||
) |
Return `True` if `a` and `b` are structurally identical AST nodes. >>> x = Int('x') >>> y = Int('y') >>> eq(x, y) False >>> eq(x + 1, x + 1) True >>> eq(x + 1, 1 + x) False >>> eq(simplify(x + 1), simplify(1 + x)) True
Definition at line 472 of file z3py.py.
Referenced by substitute().
def z3py.Exists | ( | vs, | |
body, | |||
weight = 1 , |
|||
qid = "" , |
|||
skid = "" , |
|||
patterns = [] , |
|||
no_patterns = [] |
|||
) |
Create a Z3 exists formula. The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> x = Int('x') >>> y = Int('y') >>> q = Exists([x, y], f(x, y) >= x, skid="foo") >>> q Exists([x, y], f(x, y) >= x) >>> is_quantifier(q) True >>> r = Tactic('nnf')(q).as_expr() >>> is_quantifier(r) False
Definition at line 2240 of file z3py.py.
Referenced by Fixedpoint.abstract().
def z3py.Ext | ( | a, | |
b | |||
) |
Return extensionality index for one-dimensional arrays. >> a, b = Consts('a b', SetSort(IntSort())) >> Ext(a, b) Ext(a, b)
Definition at line 4868 of file z3py.py.
def z3py.Extract | ( | high, | |
low, | |||
a | |||
) |
Create a Z3 bit-vector extraction expression. Extract is overloaded to also work on sequence extraction. The functions SubString and SubSeq are redirected to Extract. For this case, the arguments are reinterpreted as: high - is a sequence (string) low - is an offset a - is the length to be extracted >>> x = BitVec('x', 8) >>> Extract(6, 2, x) Extract(6, 2, x) >>> Extract(6, 2, x).sort() BitVec(5) >>> simplify(Extract(StringVal("abcd"),2,1)) "c"
Definition at line 4128 of file z3py.py.
Referenced by SubSeq(), and SubString().
def z3py.FailIf | ( | p, | |
ctx = None |
|||
) |
Return a tactic that fails if the probe `p` evaluates to true. Otherwise, it returns the input goal unmodified. In the following example, the tactic applies 'simplify' if and only if there are more than 2 constraints in the goal. >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify')) >>> x, y = Ints('x y') >>> g = Goal() >>> g.add(x > 0) >>> g.add(y > 0) >>> t(g) [[x > 0, y > 0]] >>> g.add(x == y + 1) >>> t(g) [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 8712 of file z3py.py.
def z3py.FiniteDomainSort | ( | name, | |
sz, | |||
ctx = None |
|||
) |
Create a named finite domain sort of a given size sz
Definition at line 7716 of file z3py.py.
Referenced by Context.MkFiniteDomainSort().
def z3py.FiniteDomainVal | ( | val, | |
sort, | |||
ctx = None |
|||
) |
def z3py.Float128 | ( | ctx = None | ) |
def z3py.Float16 | ( | ctx = None | ) |
def z3py.Float32 | ( | ctx = None | ) |
def z3py.Float64 | ( | ctx = None | ) |
def z3py.FloatDouble | ( | ctx = None | ) |
def z3py.FloatHalf | ( | ctx = None | ) |
def z3py.FloatQuadruple | ( | ctx = None | ) |
def z3py.FloatSingle | ( | ctx = None | ) |
def z3py.ForAll | ( | vs, | |
body, | |||
weight = 1 , |
|||
qid = "" , |
|||
skid = "" , |
|||
patterns = [] , |
|||
no_patterns = [] |
|||
) |
Create a Z3 forall formula. The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> x = Int('x') >>> y = Int('y') >>> ForAll([x, y], f(x, y) >= x) ForAll([x, y], f(x, y) >= x) >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ]) ForAll([x, y], f(x, y) >= x) >>> ForAll([x, y], f(x, y) >= x, weight=10) ForAll([x, y], f(x, y) >= x)
Definition at line 2222 of file z3py.py.
Referenced by Fixedpoint.abstract().
def z3py.FP | ( | name, | |
fpsort, | |||
ctx = None |
|||
) |
Return a floating-point constant named `name`. `fpsort` is the floating-point sort. If `ctx=None`, then the global context is used. >>> x = FP('x', FPSort(8, 24)) >>> is_fp(x) True >>> x.ebits() 8 >>> x.sort() FPSort(8, 24) >>> word = FPSort(8, 24) >>> x2 = FP('x', word) >>> eq(x, x2) True
Definition at line 10072 of file z3py.py.
Referenced by FPs().
def z3py.fpAbs | ( | a, | |
ctx = None |
|||
) |
Create a Z3 floating-point absolute value expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FPVal(1.0, s) >>> fpAbs(x) fpAbs(1) >>> y = FPVal(-20.0, s) >>> y -1.25*(2**4) >>> fpAbs(y) fpAbs(-1.25*(2**4)) >>> fpAbs(-1.25*(2**4)) fpAbs(-1.25*(2**4)) >>> fpAbs(x).sort() FPSort(8, 24)
Definition at line 10115 of file z3py.py.
def z3py.fpAdd | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
Create a Z3 floating-point addition expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpAdd(rm, x, y) x + y >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ fpAdd(RTZ(), x, y) >>> fpAdd(rm, x, y).sort() FPSort(8, 24)
Definition at line 10206 of file z3py.py.
Referenced by FPRef.__add__(), and FPRef.__radd__().
def z3py.fpBVToFP | ( | v, | |
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a bit-vector term to a floating-point term. >>> x_bv = BitVecVal(0x3F800000, 32) >>> x_fp = fpBVToFP(x_bv, Float32()) >>> x_fp fpToFP(1065353216) >>> simplify(x_fp) 1
Definition at line 10528 of file z3py.py.
def z3py.fpDiv | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
Create a Z3 floating-point division expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpDiv(rm, x, y) x / y >>> fpDiv(rm, x, y).sort() FPSort(8, 24)
Definition at line 10253 of file z3py.py.
Referenced by FPRef.__div__(), and FPRef.__rdiv__().
def z3py.fpEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpFMA | ( | rm, | |
a, | |||
b, | |||
c, | |||
ctx = None |
|||
) |
def z3py.fpFP | ( | sgn, | |
exp, | |||
sig, | |||
ctx = None |
|||
) |
Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp. >>> s = FPSort(8, 24) >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23)) >>> print(x) fpFP(1, 127, 4194304) >>> xv = FPVal(-1.5, s) >>> print(xv) -1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() sat >>> xv = FPVal(+1.5, s) >>> print(xv) 1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() unsat
def z3py.fpFPToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a floating-point term to a floating-point term of different precision. >>> x_sgl = FPVal(1.0, Float32()) >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64()) >>> x_dbl fpToFP(RNE(), 1) >>> simplify(x_dbl) 1 >>> x_dbl.sort() FPSort(11, 53)
Definition at line 10545 of file z3py.py.
def z3py.fpGEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create the Z3 floating-point expression `other >= self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpGEQ(x, y) x >= y >>> (x >= y).sexpr() '(fp.geq x y)'
Definition at line 10424 of file z3py.py.
Referenced by FPRef.__ge__().
def z3py.fpGT | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create the Z3 floating-point expression `other > self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpGT(x, y) x > y >>> (x > y).sexpr() '(fp.gt x y)'
Definition at line 10412 of file z3py.py.
Referenced by FPRef.__gt__().
def z3py.fpInfinity | ( | s, | |
negative | |||
) |
def z3py.fpIsInf | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsNaN | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsNegative | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsNormal | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsPositive | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsSubnormal | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsZero | ( | a, | |
ctx = None |
|||
) |
def z3py.fpLEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create the Z3 floating-point expression `other <= self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpLEQ(x, y) x <= y >>> (x <= y).sexpr() '(fp.leq x y)'
Definition at line 10400 of file z3py.py.
Referenced by FPRef.__le__().
def z3py.fpLT | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create the Z3 floating-point expression `other < self`. >>> x, y = FPs('x y', FPSort(8, 24)) >>> fpLT(x, y) x < y >>> (x < y).sexpr() '(fp.lt x y)'
Definition at line 10388 of file z3py.py.
Referenced by FPRef.__lt__().
def z3py.fpMax | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpMin | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpMinusInfinity | ( | s | ) |
def z3py.fpMinusZero | ( | s | ) |
def z3py.fpMul | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
Create a Z3 floating-point multiplication expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpMul(rm, x, y) x * y >>> fpMul(rm, x, y).sort() FPSort(8, 24)
Definition at line 10238 of file z3py.py.
Referenced by FPRef.__mul__(), and FPRef.__rmul__().
def z3py.fpNaN | ( | s | ) |
Create a Z3 floating-point NaN term. >>> s = FPSort(8, 24) >>> set_fpa_pretty(True) >>> fpNaN(s) NaN >>> pb = get_fpa_pretty() >>> set_fpa_pretty(False) >>> fpNaN(s) fpNaN(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 9960 of file z3py.py.
Referenced by FPVal().
def z3py.fpNeg | ( | a, | |
ctx = None |
|||
) |
Create a Z3 floating-point addition expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> fpNeg(x) -x >>> fpNeg(x).sort() FPSort(8, 24)
Definition at line 10138 of file z3py.py.
Referenced by FPRef.__neg__().
def z3py.fpNEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpPlusInfinity | ( | s | ) |
Create a Z3 floating-point +oo term. >>> s = FPSort(8, 24) >>> pb = get_fpa_pretty() >>> set_fpa_pretty(True) >>> fpPlusInfinity(s) +oo >>> set_fpa_pretty(False) >>> fpPlusInfinity(s) fpPlusInfinity(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 9977 of file z3py.py.
Referenced by FPVal().
def z3py.fpPlusZero | ( | s | ) |
def z3py.fpRealToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a real term to a floating-point term. >>> x_r = RealVal(1.5) >>> x_fp = fpRealToFP(RNE(), x_r, Float32()) >>> x_fp fpToFP(RNE(), 3/2) >>> simplify(x_fp) 1.5
Definition at line 10565 of file z3py.py.
def z3py.fpRem | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create a Z3 floating-point remainder expression. >>> s = FPSort(8, 24) >>> x = FP('x', s) >>> y = FP('y', s) >>> fpRem(x, y) fpRem(x, y) >>> fpRem(x, y).sort() FPSort(8, 24)
Definition at line 10268 of file z3py.py.
Referenced by FPRef.__mod__(), and FPRef.__rmod__().
def z3py.fpRoundToIntegral | ( | rm, | |
a, | |||
ctx = None |
|||
) |
def z3py.FPs | ( | names, | |
fpsort, | |||
ctx = None |
|||
) |
def z3py.fpSignedToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a signed bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFP(RNE(), 4294967291) >>> simplify(x_fp) -1.25*(2**2)
Definition at line 10583 of file z3py.py.
def z3py.FPSort | ( | ebits, | |
sbits, | |||
ctx = None |
|||
) |
Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used. >>> Single = FPSort(8, 24) >>> Double = FPSort(11, 53) >>> Single FPSort(8, 24) >>> x = Const('x', Single) >>> eq(x, FP('x', FPSort(8, 24))) True
Definition at line 9901 of file z3py.py.
Referenced by get_default_fp_sort(), Context.mkFPSort(), Context.MkFPSort(), Context.MkFPSort128(), Context.mkFPSort128(), Context.MkFPSort16(), Context.mkFPSort16(), Context.MkFPSort32(), Context.mkFPSort32(), Context.MkFPSort64(), Context.mkFPSort64(), Context.MkFPSortDouble(), Context.mkFPSortDouble(), Context.MkFPSortHalf(), Context.mkFPSortHalf(), Context.MkFPSortQuadruple(), Context.mkFPSortQuadruple(), Context.MkFPSortSingle(), and Context.mkFPSortSingle().
def z3py.fpSqrt | ( | rm, | |
a, | |||
ctx = None |
|||
) |
def z3py.fpSub | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
Create a Z3 floating-point subtraction expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpSub(rm, x, y) x - y >>> fpSub(rm, x, y).sort() FPSort(8, 24)
Definition at line 10223 of file z3py.py.
Referenced by FPRef.__rsub__(), and FPRef.__sub__().
def z3py.fpToFP | ( | a1, | |
a2 = None , |
|||
a3 = None , |
|||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression from other term sorts to floating-point. From a bit-vector term in IEEE 754-2008 format: >>> x = FPVal(1.0, Float32()) >>> x_bv = fpToIEEEBV(x) >>> simplify(fpToFP(x_bv, Float32())) 1 From a floating-point term with different precision: >>> x = FPVal(1.0, Float32()) >>> x_db = fpToFP(RNE(), x, Float64()) >>> x_db.sort() FPSort(11, 53) From a real term: >>> x_r = RealVal(1.5) >>> simplify(fpToFP(RNE(), x_r, Float32())) 1.5 From a signed bit-vector term: >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> simplify(fpToFP(RNE(), x_signed, Float32())) -1.25*(2**2)
def z3py.fpToFPUnsigned | ( | rm, | |
x, | |||
s, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.
Definition at line 10619 of file z3py.py.
def z3py.fpToIEEEBV | ( | x, | |
ctx = None |
|||
) |
\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format. The size of the resulting bit-vector is automatically determined. Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion knows only one NaN and it will always produce the same bit-vector representation of that NaN. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToIEEEBV(x) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 10693 of file z3py.py.
def z3py.fpToReal | ( | x, | |
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from floating-point expression to real. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToReal(x) >>> print(is_fp(x)) True >>> print(is_real(y)) True >>> print(is_fp(y)) False >>> print(is_real(x)) False
Definition at line 10673 of file z3py.py.
def z3py.fpToSBV | ( | rm, | |
x, | |||
s, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToSBV(RTZ(), x, BitVecSort(32)) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 10629 of file z3py.py.
def z3py.fpToUBV | ( | rm, | |
x, | |||
s, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToUBV(RTZ(), x, BitVecSort(32)) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 10651 of file z3py.py.
def z3py.fpUnsignedToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFPUnsigned(RNE(), 4294967291) >>> simplify(x_fp) 1*(2**32)
Definition at line 10601 of file z3py.py.
def z3py.FPVal | ( | sig, | |
exp = None , |
|||
fps = None , |
|||
ctx = None |
|||
) |
Return a floating-point value of value `val` and sort `fps`. If `ctx=None`, then the global context is used. >>> v = FPVal(20.0, FPSort(8, 24)) >>> v 1.25*(2**4) >>> print("0x%.8x" % v.exponent_as_long(False)) 0x00000004 >>> v = FPVal(2.25, FPSort(8, 24)) >>> v 1.125*(2**1) >>> v = FPVal(-2.25, FPSort(8, 24)) >>> v -1.125*(2**1) >>> FPVal(-0.0, FPSort(8, 24)) -0.0 >>> FPVal(0.0, FPSort(8, 24)) +0.0 >>> FPVal(+0.0, FPSort(8, 24)) +0.0
Definition at line 10026 of file z3py.py.
Referenced by set_default_fp_sort().
def z3py.fpZero | ( | s, | |
negative | |||
) |
def z3py.FreshBool | ( | prefix = "b" , |
|
ctx = None |
|||
) |
Return a fresh Boolean constant in the given context using the given prefix. If `ctx=None`, then the global context is used. >>> b1 = FreshBool() >>> b2 = FreshBool() >>> eq(b1, b2) False
Definition at line 1771 of file z3py.py.
def z3py.FreshConst | ( | sort, | |
prefix = "c" |
|||
) |
def z3py.FreshFunction | ( | * | sig | ) |
def z3py.FreshInt | ( | prefix = "x" , |
|
ctx = None |
|||
) |
def z3py.FreshReal | ( | prefix = "b" , |
|
ctx = None |
|||
) |
def z3py.Full | ( | s | ) |
Create the regular expression that accepts the universal language >>> e = Full(ReSort(SeqSort(IntSort()))) >>> print(e) Full(ReSort(Seq(Int))) >>> e1 = Full(ReSort(StringSort())) >>> print(e1) Full(ReSort(String))
Definition at line 10975 of file z3py.py.
def z3py.FullSet | ( | s | ) |
def z3py.Function | ( | name, | |
* | sig | ||
) |
Create a new Z3 uninterpreted function with the given sorts. >>> f = Function('f', IntSort(), IntSort()) >>> f(f(0)) f(f(0))
Definition at line 863 of file z3py.py.
def z3py.get_as_array_func | ( | n | ) |
Return the function declaration f associated with a Z3 expression of the form (_ as-array f).
Definition at line 6699 of file z3py.py.
Referenced by ModelRef.get_interp().
def z3py.get_default_fp_sort | ( | ctx = None | ) |
def z3py.get_default_rounding_mode | ( | ctx = None | ) |
Retrieves the global default rounding mode.
Definition at line 9290 of file z3py.py.
Referenced by set_default_fp_sort().
def z3py.get_full_version | ( | ) |
def z3py.get_map_func | ( | a | ) |
Return the function declaration associated with a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort()) >>> b = Array('b', IntSort(), IntSort()) >>> a = Map(f, b) >>> eq(f, get_map_func(a)) True >>> get_map_func(a) f >>> get_map_func(a)(0) f(0)
Definition at line 4676 of file z3py.py.
def z3py.get_param | ( | name | ) |
def z3py.get_var_index | ( | a | ) |
Return the de-Bruijn index of the Z3 bounded variable `a`. >>> x = Int('x') >>> y = Int('y') >>> is_var(x) False >>> is_const(x) True >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> # Z3 replaces x and y with bound variables when ForAll is executed. >>> q = ForAll([x, y], f(x, y) == x + y) >>> q.body() f(Var(1), Var(0)) == Var(1) + Var(0) >>> b = q.body() >>> b.arg(0) f(Var(1), Var(0)) >>> v1 = b.arg(0).arg(0) >>> v2 = b.arg(0).arg(1) >>> v1 Var(1) >>> v2 Var(0) >>> get_var_index(v1) 1 >>> get_var_index(v2) 0
Definition at line 1335 of file z3py.py.
def z3py.get_version | ( | ) |
def z3py.help_simplify | ( | ) |
def z3py.If | ( | a, | |
b, | |||
c, | |||
ctx = None |
|||
) |
Create a Z3 if-then-else expression. >>> x = Int('x') >>> y = Int('y') >>> max = If(x > y, x, y) >>> max If(x > y, x, y) >>> simplify(max) If(x <= y, y, x)
Definition at line 1381 of file z3py.py.
Referenced by BoolRef.__mul__(), ArithRef.__mul__(), and Abs().
def z3py.Implies | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create a Z3 implies expression. >>> p, q = Bools('p q') >>> Implies(p, q) Implies(p, q)
Definition at line 1785 of file z3py.py.
Referenced by Fixedpoint.add_rule(), and Fixedpoint.update_rule().
def z3py.IndexOf | ( | s, | |
substr, | |||
offset = None |
|||
) |
Retrieve the index of substring within a string starting at a specified offset. >>> simplify(IndexOf("abcabc", "bc", 0)) 1 >>> simplify(IndexOf("abcabc", "bc", 2)) 4
Definition at line 11059 of file z3py.py.
def z3py.InRe | ( | s, | |
re | |||
) |
Create regular expression membership test >>> re = Union(Re("a"),Re("b")) >>> print (simplify(InRe("a", re))) True >>> print (simplify(InRe("b", re))) True >>> print (simplify(InRe("c", re))) False
Definition at line 11172 of file z3py.py.
def z3py.Int | ( | name, | |
ctx = None |
|||
) |
Return an integer constant named `name`. If `ctx=None`, then the global context is used. >>> x = Int('x') >>> is_int(x) True >>> is_int(x + 1) True
Definition at line 3248 of file z3py.py.
Referenced by Ints(), and IntVector().
def z3py.Int2BV | ( | a, | |
num_bits | |||
) |
def z3py.Intersect | ( | * | args | ) |
def z3py.Ints | ( | names, | |
ctx = None |
|||
) |
def z3py.IntSort | ( | ctx = None | ) |
Return the integer sort in the given context. If `ctx=None`, then the global context is used. >>> IntSort() Int >>> x = Const('x', IntSort()) >>> is_int(x) True >>> x.sort() == IntSort() True >>> x.sort() == BoolSort() False
Definition at line 3138 of file z3py.py.
Referenced by FreshInt(), Context.getIntSort(), Int(), IntVal(), and Context.mkIntSort().
def z3py.IntToStr | ( | s | ) |
def z3py.IntVal | ( | val, | |
ctx = None |
|||
) |
Return a Z3 integer value. If `ctx=None`, then the global context is used. >>> IntVal(1) 1 >>> IntVal("100") 100
Definition at line 3188 of file z3py.py.
Referenced by SeqRef.__getitem__(), BoolRef.__mul__(), SeqRef.at(), AlgebraicNumRef.index(), and IndexOf().
def z3py.IntVector | ( | prefix, | |
sz, | |||
ctx = None |
|||
) |
def z3py.is_add | ( | a | ) |
def z3py.is_algebraic_value | ( | a | ) |
def z3py.is_and | ( | a | ) |
def z3py.is_app | ( | a | ) |
Return `True` if `a` is a Z3 function application. Note that, constants are function applications with 0 arguments. >>> a = Int('a') >>> is_app(a) True >>> is_app(a + 1) True >>> is_app(IntSort()) False >>> is_app(1) False >>> is_app(IntVal(1)) True >>> x = Int('x') >>> is_app(ForAll(x, x >= 0)) False
Definition at line 1265 of file z3py.py.
Referenced by ExprRef.arg(), ExprRef.children(), ExprRef.decl(), is_app_of(), is_const(), is_quantifier(), Lambda(), ExprRef.num_args(), and RecAddDefinition().
def z3py.is_app_of | ( | a, | |
k | |||
) |
Return `True` if `a` is an application of the given kind `k`. >>> x = Int('x') >>> n = x + 1 >>> is_app_of(n, Z3_OP_ADD) True >>> is_app_of(n, Z3_OP_MUL) False
Definition at line 1368 of file z3py.py.
Referenced by is_add(), is_and(), is_const_array(), is_default(), is_distinct(), is_div(), is_eq(), is_false(), is_ge(), is_gt(), is_idiv(), is_implies(), is_is_int(), is_K(), is_le(), is_lt(), is_map(), is_mod(), is_mul(), is_not(), is_or(), is_select(), is_store(), is_sub(), is_to_int(), is_to_real(), and is_true().
def z3py.is_arith | ( | a | ) |
Return `True` if `a` is an arithmetical expression. >>> x = Int('x') >>> is_arith(x) True >>> is_arith(x + 1) True >>> is_arith(1) False >>> is_arith(IntVal(1)) True >>> y = Real('y') >>> is_arith(y) True >>> is_arith(y + 1) True
Definition at line 2665 of file z3py.py.
Referenced by is_algebraic_value(), is_int(), is_int_value(), is_rational_value(), and is_real().
def z3py.is_arith_sort | ( | s | ) |
Return `True` if s is an arithmetical sort (type). >>> is_arith_sort(IntSort()) True >>> is_arith_sort(RealSort()) True >>> is_arith_sort(BoolSort()) False >>> n = Int('x') + 1 >>> is_arith_sort(n.sort()) True
Definition at line 2364 of file z3py.py.
Referenced by ArithSortRef.subsort().
def z3py.is_array | ( | a | ) |
def z3py.is_array_sort | ( | a | ) |
def z3py.is_as_array | ( | n | ) |
Return true if n is a Z3 expression of the form (_ as-array f).
Definition at line 6694 of file z3py.py.
Referenced by get_as_array_func(), and ModelRef.get_interp().
def z3py.is_ast | ( | a | ) |
Return `True` if `a` is an AST node. >>> is_ast(10) False >>> is_ast(IntVal(10)) True >>> is_ast(Int('x')) True >>> is_ast(BoolSort()) True >>> is_ast(Function('f', IntSort(), IntSort())) True >>> is_ast("x") False >>> is_ast(Solver()) False
Definition at line 451 of file z3py.py.
Referenced by eq(), AstRef.eq(), and ReSort().
def z3py.is_bool | ( | a | ) |
Return `True` if `a` is a Z3 Boolean expression. >>> p = Bool('p') >>> is_bool(p) True >>> q = Bool('q') >>> is_bool(And(p, q)) True >>> x = Real('x') >>> is_bool(x) False >>> is_bool(x == 0) True
Definition at line 1571 of file z3py.py.
Referenced by is_quantifier(), and prove().
def z3py.is_bv | ( | a | ) |
Return `True` if `a` is a Z3 bit-vector expression. >>> b = BitVec('b', 32) >>> is_bv(b) True >>> is_bv(b + 10) True >>> is_bv(Int('x')) False
Definition at line 3944 of file z3py.py.
Referenced by BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), Concat(), Extract(), fpBVToFP(), fpFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), is_bv_value(), Product(), RepeatBitVec(), SignExt(), Sum(), and ZeroExt().
def z3py.is_bv_sort | ( | s | ) |
Return True if `s` is a Z3 bit-vector sort. >>> is_bv_sort(BitVecSort(32)) True >>> is_bv_sort(IntSort()) False
Definition at line 3476 of file z3py.py.
Referenced by BitVecVal(), fpToSBV(), fpToUBV(), and BitVecSortRef.subsort().
def z3py.is_bv_value | ( | a | ) |
def z3py.is_const | ( | a | ) |
Return `True` if `a` is Z3 constant/variable expression. >>> a = Int('a') >>> is_const(a) True >>> is_const(a + 1) False >>> is_const(1) False >>> is_const(IntVal(1)) True >>> x = Int('x') >>> is_const(ForAll(x, x >= 0)) False
Definition at line 1291 of file z3py.py.
Referenced by ModelRef.__getitem__(), Solver.assert_and_track(), Optimize.assert_and_track(), ModelRef.get_interp(), is_quantifier(), and prove().
def z3py.is_const_array | ( | a | ) |
def z3py.is_default | ( | a | ) |
def z3py.is_distinct | ( | a | ) |
def z3py.is_div | ( | a | ) |
def z3py.is_eq | ( | a | ) |
Return `True` if `a` is a Z3 equality expression. >>> x, y = Ints('x y') >>> is_eq(x == y) True
Definition at line 1669 of file z3py.py.
Referenced by AstRef.__bool__().
def z3py.is_expr | ( | a | ) |
Return `True` if `a` is a Z3 expression. >>> a = Int('a') >>> is_expr(a) True >>> is_expr(a + 1) True >>> is_expr(IntSort()) False >>> is_expr(1) False >>> is_expr(IntVal(1)) True >>> x = Int('x') >>> is_expr(ForAll(x, x >= 0)) True >>> is_expr(FPVal(1.0)) True
Definition at line 1242 of file z3py.py.
Referenced by SeqRef.__gt__(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), Cbrt(), CharFromBv(), CharIsDigit(), Concat(), deserialize(), AlgebraicNumRef.index(), IndexOf(), IntToStr(), is_quantifier(), is_var(), K(), MultiPattern(), Replace(), simplify(), Sqrt(), StrFromCode(), StrToCode(), substitute(), substitute_funs(), substitute_vars(), and ModelRef.update_value().
def z3py.is_false | ( | a | ) |
Return `True` if `a` is the Z3 false expression. >>> p = Bool('p') >>> is_false(p) False >>> is_false(False) False >>> is_false(BoolVal(False)) True
Definition at line 1607 of file z3py.py.
Referenced by AstRef.__bool__().
def z3py.is_finite_domain | ( | a | ) |
Return `True` if `a` is a Z3 finite-domain expression. >>> s = FiniteDomainSort('S', 100) >>> b = Const('b', s) >>> is_finite_domain(b) True >>> is_finite_domain(Int('x')) False
Definition at line 7747 of file z3py.py.
Referenced by is_finite_domain_value().
def z3py.is_finite_domain_sort | ( | s | ) |
Return True if `s` is a Z3 finite-domain sort. >>> is_finite_domain_sort(FiniteDomainSort('S', 100)) True >>> is_finite_domain_sort(IntSort()) False
Definition at line 7724 of file z3py.py.
Referenced by FiniteDomainVal().
def z3py.is_finite_domain_value | ( | a | ) |
def z3py.is_fp | ( | a | ) |
Return `True` if `a` is a Z3 floating-point expression. >>> b = FP('b', FPSort(8, 24)) >>> is_fp(b) True >>> is_fp(b + 1.0) True >>> is_fp(Int('x')) False
Definition at line 9872 of file z3py.py.
Referenced by fpFPToFP(), fpIsPositive(), fpNeg(), fpToFP(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), is_fp_value(), and set_default_fp_sort().
def z3py.is_fp_sort | ( | s | ) |
Return True if `s` is a Z3 floating-point sort. >>> is_fp_sort(FPSort(8, 24)) True >>> is_fp_sort(IntSort()) False
Definition at line 9456 of file z3py.py.
Referenced by fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), and FPVal().
def z3py.is_fp_value | ( | a | ) |
def z3py.is_fprm | ( | a | ) |
Return `True` if `a` is a Z3 floating-point rounding mode expression. >>> rm = RNE() >>> is_fprm(rm) True >>> rm = 1.0 >>> is_fprm(rm) False
Definition at line 9716 of file z3py.py.
Referenced by fpFPToFP(), fpNeg(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), and is_fprm_value().
def z3py.is_fprm_sort | ( | s | ) |
def z3py.is_fprm_value | ( | a | ) |
Return `True` if `a` is a Z3 floating-point rounding mode numeral value.
Definition at line 9729 of file z3py.py.
Referenced by set_default_rounding_mode().
def z3py.is_func_decl | ( | a | ) |
Return `True` if `a` is a Z3 function declaration. >>> f = Function('f', IntSort(), IntSort()) >>> is_func_decl(f) True >>> x = Real('x') >>> is_func_decl(x) False
Definition at line 850 of file z3py.py.
Referenced by Map(), prove(), substitute_funs(), and ModelRef.update_value().
def z3py.is_ge | ( | a | ) |
def z3py.is_gt | ( | a | ) |
def z3py.is_idiv | ( | a | ) |
def z3py.is_implies | ( | a | ) |
def z3py.is_int | ( | a | ) |
def z3py.is_int_value | ( | a | ) |
Return `True` if `a` is an integer value of sort Int. >>> is_int_value(IntVal(1)) True >>> is_int_value(1) False >>> is_int_value(Int('x')) False >>> n = Int('x') + 1 >>> n x + 1 >>> n.arg(1) 1 >>> is_int_value(n.arg(1)) True >>> is_int_value(RealVal("1/3")) False >>> is_int_value(RealVal(1)) False
Definition at line 2732 of file z3py.py.
def z3py.is_is_int | ( | a | ) |
def z3py.is_K | ( | a | ) |
def z3py.is_le | ( | a | ) |
def z3py.is_lt | ( | a | ) |
def z3py.is_map | ( | a | ) |
Return `True` if `a` is a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort()) >>> b = Array('b', IntSort(), IntSort()) >>> a = Map(f, b) >>> a Map(f, b) >>> is_map(a) True >>> is_map(b) False
Definition at line 4651 of file z3py.py.
Referenced by get_map_func().
def z3py.is_mod | ( | a | ) |
def z3py.is_mul | ( | a | ) |
def z3py.is_not | ( | a | ) |
def z3py.is_or | ( | a | ) |
def z3py.is_pattern | ( | a | ) |
Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation. >>> f = Function('f', IntSort(), IntSort()) >>> x = Int('x') >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ]) >>> q ForAll(x, f(x) == 0) >>> q.num_patterns() 1 >>> is_pattern(q.pattern(0)) True >>> q.pattern(0) f(Var(0))
Definition at line 1933 of file z3py.py.
Referenced by is_quantifier(), and MultiPattern().
def z3py.is_probe | ( | p | ) |
def z3py.is_quantifier | ( | a | ) |
def z3py.is_rational_value | ( | a | ) |
Return `True` if `a` is rational value of sort Real. >>> is_rational_value(RealVal(1)) True >>> is_rational_value(RealVal("3/5")) True >>> is_rational_value(IntVal(1)) False >>> is_rational_value(1) False >>> n = Real('x') + 1 >>> n.arg(1) 1 >>> is_rational_value(n.arg(1)) True >>> is_rational_value(Real('x')) False
Definition at line 2756 of file z3py.py.
def z3py.is_re | ( | s | ) |
def z3py.is_real | ( | a | ) |
Return `True` if `a` is a real expression. >>> x = Int('x') >>> is_real(x + 1) False >>> y = Real('y') >>> is_real(y) True >>> is_real(y + 1) True >>> is_real(1) False >>> is_real(RealVal(1)) True
Definition at line 2705 of file z3py.py.
Referenced by fpRealToFP(), and fpToFP().
def z3py.is_select | ( | a | ) |
def z3py.is_seq | ( | a | ) |
Return `True` if `a` is a Z3 sequence expression. >>> print (is_seq(Unit(IntVal(0)))) True >>> print (is_seq(StringVal("abc"))) True
Definition at line 10894 of file z3py.py.
Referenced by CharIsDigit(), Concat(), and Extract().
def z3py.is_sort | ( | s | ) |
Return `True` if `s` is a Z3 sort. >>> is_sort(IntSort()) True >>> is_sort(Int('x')) False >>> is_expr(Int('x')) True
Definition at line 647 of file z3py.py.
Referenced by ArraySort(), CreateDatatypes(), FreshFunction(), Function(), IsSubset(), K(), PropagateFunction(), prove(), RecFunction(), and Var().
def z3py.is_store | ( | a | ) |
def z3py.is_string | ( | a | ) |
def z3py.is_string_value | ( | a | ) |
def z3py.is_sub | ( | a | ) |
def z3py.is_to_int | ( | a | ) |
def z3py.is_to_real | ( | a | ) |
def z3py.is_true | ( | a | ) |
Return `True` if `a` is the Z3 true expression. >>> p = Bool('p') >>> is_true(p) False >>> is_true(simplify(p == p)) True >>> x = Real('x') >>> is_true(x == 0) False >>> # True is a Python Boolean expression >>> is_true(True) False
Definition at line 1589 of file z3py.py.
Referenced by AstRef.__bool__().
def z3py.is_var | ( | a | ) |
Return `True` if `a` is variable. Z3 uses de-Bruijn indices for representing bound variables in quantifiers. >>> x = Int('x') >>> is_var(x) False >>> is_const(x) True >>> f = Function('f', IntSort(), IntSort()) >>> # Z3 replaces x with bound variables when ForAll is executed. >>> q = ForAll(x, f(x) == x) >>> b = q.body() >>> b f(Var(0)) == Var(0) >>> b.arg(1) Var(0) >>> is_var(b.arg(1)) True
Definition at line 1310 of file z3py.py.