Z3
Public Member Functions
ArithRef Class Reference
+ Inheritance diagram for ArithRef:

Public Member Functions

def sort (self)
 
def is_int (self)
 
def is_real (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
def from_string (self, s)
 
def serialize (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Integer and Real expressions.

Definition at line 2380 of file z3py.py.

Member Function Documentation

◆ __add__()

def __add__ (   self,
  other 
)
Create the Z3 expression `self + other`.

>>> x = Int('x')
>>> y = Int('y')
>>> x + y
x + y
>>> (x + y).sort()
Int

Definition at line 2418 of file z3py.py.

2418  def __add__(self, other):
2419  """Create the Z3 expression `self + other`.
2420 
2421  >>> x = Int('x')
2422  >>> y = Int('y')
2423  >>> x + y
2424  x + y
2425  >>> (x + y).sort()
2426  Int
2427  """
2428  a, b = _coerce_exprs(self, other)
2429  return ArithRef(_mk_bin(Z3_mk_add, a, b), self.ctx)
2430 

◆ __div__()

def __div__ (   self,
  other 
)
Create the Z3 expression `other/self`.

>>> x = Int('x')
>>> y = Int('y')
>>> x/y
x/y
>>> (x/y).sort()
Int
>>> (x/y).sexpr()
'(div x y)'
>>> x = Real('x')
>>> y = Real('y')
>>> x/y
x/y
>>> (x/y).sort()
Real
>>> (x/y).sexpr()
'(/ x y)'

Definition at line 2517 of file z3py.py.

2517  def __div__(self, other):
2518  """Create the Z3 expression `other/self`.
2519 
2520  >>> x = Int('x')
2521  >>> y = Int('y')
2522  >>> x/y
2523  x/y
2524  >>> (x/y).sort()
2525  Int
2526  >>> (x/y).sexpr()
2527  '(div x y)'
2528  >>> x = Real('x')
2529  >>> y = Real('y')
2530  >>> x/y
2531  x/y
2532  >>> (x/y).sort()
2533  Real
2534  >>> (x/y).sexpr()
2535  '(/ x y)'
2536  """
2537  a, b = _coerce_exprs(self, other)
2538  return ArithRef(Z3_mk_div(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2539 
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.

Referenced by ArithRef.__truediv__(), BitVecRef.__truediv__(), and FPRef.__truediv__().

◆ __ge__()

def __ge__ (   self,
  other 
)
Create the Z3 expression `other >= self`.

>>> x, y = Ints('x y')
>>> x >= y
x >= y
>>> y = Real('y')
>>> x >= y
ToReal(x) >= y

Definition at line 2651 of file z3py.py.

2651  def __ge__(self, other):
2652  """Create the Z3 expression `other >= self`.
2653 
2654  >>> x, y = Ints('x y')
2655  >>> x >= y
2656  x >= y
2657  >>> y = Real('y')
2658  >>> x >= y
2659  ToReal(x) >= y
2660  """
2661  a, b = _coerce_exprs(self, other)
2662  return BoolRef(Z3_mk_ge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2663 
2664 
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.

◆ __gt__()

def __gt__ (   self,
  other 
)
Create the Z3 expression `other > self`.

>>> x, y = Ints('x y')
>>> x > y
x > y
>>> y = Real('y')
>>> x > y
ToReal(x) > y

Definition at line 2638 of file z3py.py.

2638  def __gt__(self, other):
2639  """Create the Z3 expression `other > self`.
2640 
2641  >>> x, y = Ints('x y')
2642  >>> x > y
2643  x > y
2644  >>> y = Real('y')
2645  >>> x > y
2646  ToReal(x) > y
2647  """
2648  a, b = _coerce_exprs(self, other)
2649  return BoolRef(Z3_mk_gt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2650 
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.

◆ __le__()

def __le__ (   self,
  other 
)
Create the Z3 expression `other <= self`.

>>> x, y = Ints('x y')
>>> x <= y
x <= y
>>> y = Real('y')
>>> x <= y
ToReal(x) <= y

Definition at line 2612 of file z3py.py.

2612  def __le__(self, other):
2613  """Create the Z3 expression `other <= self`.
2614 
2615  >>> x, y = Ints('x y')
2616  >>> x <= y
2617  x <= y
2618  >>> y = Real('y')
2619  >>> x <= y
2620  ToReal(x) <= y
2621  """
2622  a, b = _coerce_exprs(self, other)
2623  return BoolRef(Z3_mk_le(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2624 
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.

◆ __lt__()

def __lt__ (   self,
  other 
)
Create the Z3 expression `other < self`.

>>> x, y = Ints('x y')
>>> x < y
x < y
>>> y = Real('y')
>>> x < y
ToReal(x) < y

Definition at line 2625 of file z3py.py.

2625  def __lt__(self, other):
2626  """Create the Z3 expression `other < self`.
2627 
2628  >>> x, y = Ints('x y')
2629  >>> x < y
2630  x < y
2631  >>> y = Real('y')
2632  >>> x < y
2633  ToReal(x) < y
2634  """
2635  a, b = _coerce_exprs(self, other)
2636  return BoolRef(Z3_mk_lt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2637 
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.

◆ __mod__()

def __mod__ (   self,
  other 
)
Create the Z3 expression `other%self`.

>>> x = Int('x')
>>> y = Int('y')
>>> x % y
x%y
>>> simplify(IntVal(10) % IntVal(3))
1

Definition at line 2565 of file z3py.py.

2565  def __mod__(self, other):
2566  """Create the Z3 expression `other%self`.
2567 
2568  >>> x = Int('x')
2569  >>> y = Int('y')
2570  >>> x % y
2571  x%y
2572  >>> simplify(IntVal(10) % IntVal(3))
2573  1
2574  """
2575  a, b = _coerce_exprs(self, other)
2576  if z3_debug():
2577  _z3_assert(a.is_int(), "Z3 integer expression expected")
2578  return ArithRef(Z3_mk_mod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2579 
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
def z3_debug()
Definition: z3py.py:62

◆ __mul__()

def __mul__ (   self,
  other 
)
Create the Z3 expression `self * other`.

>>> x = Real('x')
>>> y = Real('y')
>>> x * y
x*y
>>> (x * y).sort()
Real

Definition at line 2441 of file z3py.py.

2441  def __mul__(self, other):
2442  """Create the Z3 expression `self * other`.
2443 
2444  >>> x = Real('x')
2445  >>> y = Real('y')
2446  >>> x * y
2447  x*y
2448  >>> (x * y).sort()
2449  Real
2450  """
2451  if isinstance(other, BoolRef):
2452  return If(other, self, 0)
2453  a, b = _coerce_exprs(self, other)
2454  return ArithRef(_mk_bin(Z3_mk_mul, a, b), self.ctx)
2455 
def If(a, b, c, ctx=None)
Definition: z3py.py:1381

◆ __neg__()

def __neg__ (   self)
Return an expression representing `-self`.

>>> x = Int('x')
>>> -x
-x
>>> simplify(-(-x))
x

Definition at line 2592 of file z3py.py.

2592  def __neg__(self):
2593  """Return an expression representing `-self`.
2594 
2595  >>> x = Int('x')
2596  >>> -x
2597  -x
2598  >>> simplify(-(-x))
2599  x
2600  """
2601  return ArithRef(Z3_mk_unary_minus(self.ctx_ref(), self.as_ast()), self.ctx)
2602 
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.

◆ __pos__()

def __pos__ (   self)
Return `self`.

>>> x = Int('x')
>>> +x
x

Definition at line 2603 of file z3py.py.

2603  def __pos__(self):
2604  """Return `self`.
2605 
2606  >>> x = Int('x')
2607  >>> +x
2608  x
2609  """
2610  return self
2611 

◆ __pow__()

def __pow__ (   self,
  other 
)
Create the Z3 expression `self**other` (** is the power operator).

>>> x = Real('x')
>>> x**3
x**3
>>> (x**3).sort()
Real
>>> simplify(IntVal(2)**8)
256

Definition at line 2489 of file z3py.py.

2489  def __pow__(self, other):
2490  """Create the Z3 expression `self**other` (** is the power operator).
2491 
2492  >>> x = Real('x')
2493  >>> x**3
2494  x**3
2495  >>> (x**3).sort()
2496  Real
2497  >>> simplify(IntVal(2)**8)
2498  256
2499  """
2500  a, b = _coerce_exprs(self, other)
2501  return ArithRef(Z3_mk_power(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2502 
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ __radd__()

def __radd__ (   self,
  other 
)
Create the Z3 expression `other + self`.

>>> x = Int('x')
>>> 10 + x
10 + x

Definition at line 2431 of file z3py.py.

2431  def __radd__(self, other):
2432  """Create the Z3 expression `other + self`.
2433 
2434  >>> x = Int('x')
2435  >>> 10 + x
2436  10 + x
2437  """
2438  a, b = _coerce_exprs(self, other)
2439  return ArithRef(_mk_bin(Z3_mk_add, b, a), self.ctx)
2440 

◆ __rdiv__()

def __rdiv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

>>> x = Int('x')
>>> 10/x
10/x
>>> (10/x).sexpr()
'(div 10 x)'
>>> x = Real('x')
>>> 10/x
10/x
>>> (10/x).sexpr()
'(/ 10.0 x)'

Definition at line 2544 of file z3py.py.

2544  def __rdiv__(self, other):
2545  """Create the Z3 expression `other/self`.
2546 
2547  >>> x = Int('x')
2548  >>> 10/x
2549  10/x
2550  >>> (10/x).sexpr()
2551  '(div 10 x)'
2552  >>> x = Real('x')
2553  >>> 10/x
2554  10/x
2555  >>> (10/x).sexpr()
2556  '(/ 10.0 x)'
2557  """
2558  a, b = _coerce_exprs(self, other)
2559  return ArithRef(Z3_mk_div(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
2560 

Referenced by ArithRef.__rtruediv__(), BitVecRef.__rtruediv__(), and FPRef.__rtruediv__().

◆ __rmod__()

def __rmod__ (   self,
  other 
)
Create the Z3 expression `other%self`.

>>> x = Int('x')
>>> 10 % x
10%x

Definition at line 2580 of file z3py.py.

2580  def __rmod__(self, other):
2581  """Create the Z3 expression `other%self`.
2582 
2583  >>> x = Int('x')
2584  >>> 10 % x
2585  10%x
2586  """
2587  a, b = _coerce_exprs(self, other)
2588  if z3_debug():
2589  _z3_assert(a.is_int(), "Z3 integer expression expected")
2590  return ArithRef(Z3_mk_mod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
2591 

◆ __rmul__()

def __rmul__ (   self,
  other 
)
Create the Z3 expression `other * self`.

>>> x = Real('x')
>>> 10 * x
10*x

Definition at line 2456 of file z3py.py.

2456  def __rmul__(self, other):
2457  """Create the Z3 expression `other * self`.
2458 
2459  >>> x = Real('x')
2460  >>> 10 * x
2461  10*x
2462  """
2463  a, b = _coerce_exprs(self, other)
2464  return ArithRef(_mk_bin(Z3_mk_mul, b, a), self.ctx)
2465 

◆ __rpow__()

def __rpow__ (   self,
  other 
)
Create the Z3 expression `other**self` (** is the power operator).

>>> x = Real('x')
>>> 2**x
2**x
>>> (2**x).sort()
Real
>>> simplify(2**IntVal(8))
256

Definition at line 2503 of file z3py.py.

2503  def __rpow__(self, other):
2504  """Create the Z3 expression `other**self` (** is the power operator).
2505 
2506  >>> x = Real('x')
2507  >>> 2**x
2508  2**x
2509  >>> (2**x).sort()
2510  Real
2511  >>> simplify(2**IntVal(8))
2512  256
2513  """
2514  a, b = _coerce_exprs(self, other)
2515  return ArithRef(Z3_mk_power(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
2516 

◆ __rsub__()

def __rsub__ (   self,
  other 
)
Create the Z3 expression `other - self`.

>>> x = Int('x')
>>> 10 - x
10 - x

Definition at line 2479 of file z3py.py.

2479  def __rsub__(self, other):
2480  """Create the Z3 expression `other - self`.
2481 
2482  >>> x = Int('x')
2483  >>> 10 - x
2484  10 - x
2485  """
2486  a, b = _coerce_exprs(self, other)
2487  return ArithRef(_mk_bin(Z3_mk_sub, b, a), self.ctx)
2488 

◆ __rtruediv__()

def __rtruediv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

Definition at line 2561 of file z3py.py.

2561  def __rtruediv__(self, other):
2562  """Create the Z3 expression `other/self`."""
2563  return self.__rdiv__(other)
2564 

◆ __sub__()

def __sub__ (   self,
  other 
)
Create the Z3 expression `self - other`.

>>> x = Int('x')
>>> y = Int('y')
>>> x - y
x - y
>>> (x - y).sort()
Int

Definition at line 2466 of file z3py.py.

2466  def __sub__(self, other):
2467  """Create the Z3 expression `self - other`.
2468 
2469  >>> x = Int('x')
2470  >>> y = Int('y')
2471  >>> x - y
2472  x - y
2473  >>> (x - y).sort()
2474  Int
2475  """
2476  a, b = _coerce_exprs(self, other)
2477  return ArithRef(_mk_bin(Z3_mk_sub, a, b), self.ctx)
2478 

◆ __truediv__()

def __truediv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

Definition at line 2540 of file z3py.py.

2540  def __truediv__(self, other):
2541  """Create the Z3 expression `other/self`."""
2542  return self.__div__(other)
2543 

◆ is_int()

def is_int (   self)
Return `True` if `self` is an integer expression.

>>> x = Int('x')
>>> x.is_int()
True
>>> (x + 1).is_int()
True
>>> y = Real('y')
>>> (x + y).is_int()
False

Reimplemented in RatNumRef.

Definition at line 2393 of file z3py.py.

2393  def is_int(self):
2394  """Return `True` if `self` is an integer expression.
2395 
2396  >>> x = Int('x')
2397  >>> x.is_int()
2398  True
2399  >>> (x + 1).is_int()
2400  True
2401  >>> y = Real('y')
2402  >>> (x + y).is_int()
2403  False
2404  """
2405  return self.sort().is_int()
2406 
def is_int(a)
Definition: z3py.py:2686

Referenced by IntNumRef.as_long(), and ArithSortRef.subsort().

◆ is_real()

def is_real (   self)
Return `True` if `self` is an real expression.

>>> x = Real('x')
>>> x.is_real()
True
>>> (x + 1).is_real()
True

Reimplemented in RatNumRef.

Definition at line 2407 of file z3py.py.

2407  def is_real(self):
2408  """Return `True` if `self` is an real expression.
2409 
2410  >>> x = Real('x')
2411  >>> x.is_real()
2412  True
2413  >>> (x + 1).is_real()
2414  True
2415  """
2416  return self.sort().is_real()
2417 
def is_real(a)
Definition: z3py.py:2705

◆ sort()

def sort (   self)
Return the sort (type) of the arithmetical expression `self`.

>>> Int('x').sort()
Int
>>> (Real('x') + 1).sort()
Real

Reimplemented from ExprRef.

Definition at line 2383 of file z3py.py.

2383  def sort(self):
2384  """Return the sort (type) of the arithmetical expression `self`.
2385 
2386  >>> Int('x').sort()
2387  Int
2388  >>> (Real('x') + 1).sort()
2389  Real
2390  """
2391  return ArithSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
2392 
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by FPNumRef.as_string(), ArrayRef.domain(), ArrayRef.domain_n(), FPRef.ebits(), ArithRef.is_int(), ArithRef.is_real(), ArrayRef.range(), FPRef.sbits(), BitVecRef.size(), and ExprRef.sort_kind().