Z3
Public Member Functions
ArithRef Class Reference
+ Inheritance diagram for ArithRef:

Public Member Functions

def sort (self)
 
def is_int (self)
 
def is_real (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
def from_string (self, s)
 
def serialize (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Integer and Real expressions.

Definition at line 2430 of file z3py.py.

Member Function Documentation

◆ __add__()

def __add__ (   self,
  other 
)
Create the Z3 expression `self + other`.

>>> x = Int('x')
>>> y = Int('y')
>>> x + y
x + y
>>> (x + y).sort()
Int

Definition at line 2468 of file z3py.py.

2468  def __add__(self, other):
2469  """Create the Z3 expression `self + other`.
2470 
2471  >>> x = Int('x')
2472  >>> y = Int('y')
2473  >>> x + y
2474  x + y
2475  >>> (x + y).sort()
2476  Int
2477  """
2478  a, b = _coerce_exprs(self, other)
2479  return ArithRef(_mk_bin(Z3_mk_add, a, b), self.ctx)
2480 

◆ __div__()

def __div__ (   self,
  other 
)
Create the Z3 expression `other/self`.

>>> x = Int('x')
>>> y = Int('y')
>>> x/y
x/y
>>> (x/y).sort()
Int
>>> (x/y).sexpr()
'(div x y)'
>>> x = Real('x')
>>> y = Real('y')
>>> x/y
x/y
>>> (x/y).sort()
Real
>>> (x/y).sexpr()
'(/ x y)'

Definition at line 2567 of file z3py.py.

2567  def __div__(self, other):
2568  """Create the Z3 expression `other/self`.
2569 
2570  >>> x = Int('x')
2571  >>> y = Int('y')
2572  >>> x/y
2573  x/y
2574  >>> (x/y).sort()
2575  Int
2576  >>> (x/y).sexpr()
2577  '(div x y)'
2578  >>> x = Real('x')
2579  >>> y = Real('y')
2580  >>> x/y
2581  x/y
2582  >>> (x/y).sort()
2583  Real
2584  >>> (x/y).sexpr()
2585  '(/ x y)'
2586  """
2587  a, b = _coerce_exprs(self, other)
2588  return ArithRef(Z3_mk_div(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2589 
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.

Referenced by ArithRef.__truediv__(), BitVecRef.__truediv__(), and FPRef.__truediv__().

◆ __ge__()

def __ge__ (   self,
  other 
)
Create the Z3 expression `other >= self`.

>>> x, y = Ints('x y')
>>> x >= y
x >= y
>>> y = Real('y')
>>> x >= y
ToReal(x) >= y

Definition at line 2701 of file z3py.py.

2701  def __ge__(self, other):
2702  """Create the Z3 expression `other >= self`.
2703 
2704  >>> x, y = Ints('x y')
2705  >>> x >= y
2706  x >= y
2707  >>> y = Real('y')
2708  >>> x >= y
2709  ToReal(x) >= y
2710  """
2711  a, b = _coerce_exprs(self, other)
2712  return BoolRef(Z3_mk_ge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2713 
2714 
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.

◆ __gt__()

def __gt__ (   self,
  other 
)
Create the Z3 expression `other > self`.

>>> x, y = Ints('x y')
>>> x > y
x > y
>>> y = Real('y')
>>> x > y
ToReal(x) > y

Definition at line 2688 of file z3py.py.

2688  def __gt__(self, other):
2689  """Create the Z3 expression `other > self`.
2690 
2691  >>> x, y = Ints('x y')
2692  >>> x > y
2693  x > y
2694  >>> y = Real('y')
2695  >>> x > y
2696  ToReal(x) > y
2697  """
2698  a, b = _coerce_exprs(self, other)
2699  return BoolRef(Z3_mk_gt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2700 
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.

◆ __le__()

def __le__ (   self,
  other 
)
Create the Z3 expression `other <= self`.

>>> x, y = Ints('x y')
>>> x <= y
x <= y
>>> y = Real('y')
>>> x <= y
ToReal(x) <= y

Definition at line 2662 of file z3py.py.

2662  def __le__(self, other):
2663  """Create the Z3 expression `other <= self`.
2664 
2665  >>> x, y = Ints('x y')
2666  >>> x <= y
2667  x <= y
2668  >>> y = Real('y')
2669  >>> x <= y
2670  ToReal(x) <= y
2671  """
2672  a, b = _coerce_exprs(self, other)
2673  return BoolRef(Z3_mk_le(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2674 
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.

◆ __lt__()

def __lt__ (   self,
  other 
)
Create the Z3 expression `other < self`.

>>> x, y = Ints('x y')
>>> x < y
x < y
>>> y = Real('y')
>>> x < y
ToReal(x) < y

Definition at line 2675 of file z3py.py.

2675  def __lt__(self, other):
2676  """Create the Z3 expression `other < self`.
2677 
2678  >>> x, y = Ints('x y')
2679  >>> x < y
2680  x < y
2681  >>> y = Real('y')
2682  >>> x < y
2683  ToReal(x) < y
2684  """
2685  a, b = _coerce_exprs(self, other)
2686  return BoolRef(Z3_mk_lt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2687 
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.

◆ __mod__()

def __mod__ (   self,
  other 
)
Create the Z3 expression `other%self`.

>>> x = Int('x')
>>> y = Int('y')
>>> x % y
x%y
>>> simplify(IntVal(10) % IntVal(3))
1

Definition at line 2615 of file z3py.py.

2615  def __mod__(self, other):
2616  """Create the Z3 expression `other%self`.
2617 
2618  >>> x = Int('x')
2619  >>> y = Int('y')
2620  >>> x % y
2621  x%y
2622  >>> simplify(IntVal(10) % IntVal(3))
2623  1
2624  """
2625  a, b = _coerce_exprs(self, other)
2626  if z3_debug():
2627  _z3_assert(a.is_int(), "Z3 integer expression expected")
2628  return ArithRef(Z3_mk_mod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2629 
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
def z3_debug()
Definition: z3py.py:62

◆ __mul__()

def __mul__ (   self,
  other 
)
Create the Z3 expression `self * other`.

>>> x = Real('x')
>>> y = Real('y')
>>> x * y
x*y
>>> (x * y).sort()
Real

Definition at line 2491 of file z3py.py.

2491  def __mul__(self, other):
2492  """Create the Z3 expression `self * other`.
2493 
2494  >>> x = Real('x')
2495  >>> y = Real('y')
2496  >>> x * y
2497  x*y
2498  >>> (x * y).sort()
2499  Real
2500  """
2501  if isinstance(other, BoolRef):
2502  return If(other, self, 0)
2503  a, b = _coerce_exprs(self, other)
2504  return ArithRef(_mk_bin(Z3_mk_mul, a, b), self.ctx)
2505 
def If(a, b, c, ctx=None)
Definition: z3py.py:1399

◆ __neg__()

def __neg__ (   self)
Return an expression representing `-self`.

>>> x = Int('x')
>>> -x
-x
>>> simplify(-(-x))
x

Definition at line 2642 of file z3py.py.

2642  def __neg__(self):
2643  """Return an expression representing `-self`.
2644 
2645  >>> x = Int('x')
2646  >>> -x
2647  -x
2648  >>> simplify(-(-x))
2649  x
2650  """
2651  return ArithRef(Z3_mk_unary_minus(self.ctx_ref(), self.as_ast()), self.ctx)
2652 
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.

◆ __pos__()

def __pos__ (   self)
Return `self`.

>>> x = Int('x')
>>> +x
x

Definition at line 2653 of file z3py.py.

2653  def __pos__(self):
2654  """Return `self`.
2655 
2656  >>> x = Int('x')
2657  >>> +x
2658  x
2659  """
2660  return self
2661 

◆ __pow__()

def __pow__ (   self,
  other 
)
Create the Z3 expression `self**other` (** is the power operator).

>>> x = Real('x')
>>> x**3
x**3
>>> (x**3).sort()
Real
>>> simplify(IntVal(2)**8)
256

Definition at line 2539 of file z3py.py.

2539  def __pow__(self, other):
2540  """Create the Z3 expression `self**other` (** is the power operator).
2541 
2542  >>> x = Real('x')
2543  >>> x**3
2544  x**3
2545  >>> (x**3).sort()
2546  Real
2547  >>> simplify(IntVal(2)**8)
2548  256
2549  """
2550  a, b = _coerce_exprs(self, other)
2551  return ArithRef(Z3_mk_power(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
2552 
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ __radd__()

def __radd__ (   self,
  other 
)
Create the Z3 expression `other + self`.

>>> x = Int('x')
>>> 10 + x
10 + x

Definition at line 2481 of file z3py.py.

2481  def __radd__(self, other):
2482  """Create the Z3 expression `other + self`.
2483 
2484  >>> x = Int('x')
2485  >>> 10 + x
2486  10 + x
2487  """
2488  a, b = _coerce_exprs(self, other)
2489  return ArithRef(_mk_bin(Z3_mk_add, b, a), self.ctx)
2490 

◆ __rdiv__()

def __rdiv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

>>> x = Int('x')
>>> 10/x
10/x
>>> (10/x).sexpr()
'(div 10 x)'
>>> x = Real('x')
>>> 10/x
10/x
>>> (10/x).sexpr()
'(/ 10.0 x)'

Definition at line 2594 of file z3py.py.

2594  def __rdiv__(self, other):
2595  """Create the Z3 expression `other/self`.
2596 
2597  >>> x = Int('x')
2598  >>> 10/x
2599  10/x
2600  >>> (10/x).sexpr()
2601  '(div 10 x)'
2602  >>> x = Real('x')
2603  >>> 10/x
2604  10/x
2605  >>> (10/x).sexpr()
2606  '(/ 10.0 x)'
2607  """
2608  a, b = _coerce_exprs(self, other)
2609  return ArithRef(Z3_mk_div(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
2610 

Referenced by ArithRef.__rtruediv__(), BitVecRef.__rtruediv__(), and FPRef.__rtruediv__().

◆ __rmod__()

def __rmod__ (   self,
  other 
)
Create the Z3 expression `other%self`.

>>> x = Int('x')
>>> 10 % x
10%x

Definition at line 2630 of file z3py.py.

2630  def __rmod__(self, other):
2631  """Create the Z3 expression `other%self`.
2632 
2633  >>> x = Int('x')
2634  >>> 10 % x
2635  10%x
2636  """
2637  a, b = _coerce_exprs(self, other)
2638  if z3_debug():
2639  _z3_assert(a.is_int(), "Z3 integer expression expected")
2640  return ArithRef(Z3_mk_mod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
2641 

◆ __rmul__()

def __rmul__ (   self,
  other 
)
Create the Z3 expression `other * self`.

>>> x = Real('x')
>>> 10 * x
10*x

Definition at line 2506 of file z3py.py.

2506  def __rmul__(self, other):
2507  """Create the Z3 expression `other * self`.
2508 
2509  >>> x = Real('x')
2510  >>> 10 * x
2511  10*x
2512  """
2513  a, b = _coerce_exprs(self, other)
2514  return ArithRef(_mk_bin(Z3_mk_mul, b, a), self.ctx)
2515 

◆ __rpow__()

def __rpow__ (   self,
  other 
)
Create the Z3 expression `other**self` (** is the power operator).

>>> x = Real('x')
>>> 2**x
2**x
>>> (2**x).sort()
Real
>>> simplify(2**IntVal(8))
256

Definition at line 2553 of file z3py.py.

2553  def __rpow__(self, other):
2554  """Create the Z3 expression `other**self` (** is the power operator).
2555 
2556  >>> x = Real('x')
2557  >>> 2**x
2558  2**x
2559  >>> (2**x).sort()
2560  Real
2561  >>> simplify(2**IntVal(8))
2562  256
2563  """
2564  a, b = _coerce_exprs(self, other)
2565  return ArithRef(Z3_mk_power(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
2566 

◆ __rsub__()

def __rsub__ (   self,
  other 
)
Create the Z3 expression `other - self`.

>>> x = Int('x')
>>> 10 - x
10 - x

Definition at line 2529 of file z3py.py.

2529  def __rsub__(self, other):
2530  """Create the Z3 expression `other - self`.
2531 
2532  >>> x = Int('x')
2533  >>> 10 - x
2534  10 - x
2535  """
2536  a, b = _coerce_exprs(self, other)
2537  return ArithRef(_mk_bin(Z3_mk_sub, b, a), self.ctx)
2538 

◆ __rtruediv__()

def __rtruediv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

Definition at line 2611 of file z3py.py.

2611  def __rtruediv__(self, other):
2612  """Create the Z3 expression `other/self`."""
2613  return self.__rdiv__(other)
2614 

◆ __sub__()

def __sub__ (   self,
  other 
)
Create the Z3 expression `self - other`.

>>> x = Int('x')
>>> y = Int('y')
>>> x - y
x - y
>>> (x - y).sort()
Int

Definition at line 2516 of file z3py.py.

2516  def __sub__(self, other):
2517  """Create the Z3 expression `self - other`.
2518 
2519  >>> x = Int('x')
2520  >>> y = Int('y')
2521  >>> x - y
2522  x - y
2523  >>> (x - y).sort()
2524  Int
2525  """
2526  a, b = _coerce_exprs(self, other)
2527  return ArithRef(_mk_bin(Z3_mk_sub, a, b), self.ctx)
2528 

◆ __truediv__()

def __truediv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

Definition at line 2590 of file z3py.py.

2590  def __truediv__(self, other):
2591  """Create the Z3 expression `other/self`."""
2592  return self.__div__(other)
2593 

◆ is_int()

def is_int (   self)
Return `True` if `self` is an integer expression.

>>> x = Int('x')
>>> x.is_int()
True
>>> (x + 1).is_int()
True
>>> y = Real('y')
>>> (x + y).is_int()
False

Reimplemented in RatNumRef.

Definition at line 2443 of file z3py.py.

2443  def is_int(self):
2444  """Return `True` if `self` is an integer expression.
2445 
2446  >>> x = Int('x')
2447  >>> x.is_int()
2448  True
2449  >>> (x + 1).is_int()
2450  True
2451  >>> y = Real('y')
2452  >>> (x + y).is_int()
2453  False
2454  """
2455  return self.sort().is_int()
2456 
def is_int(a)
Definition: z3py.py:2736

Referenced by IntNumRef.as_long(), and ArithSortRef.subsort().

◆ is_real()

def is_real (   self)
Return `True` if `self` is an real expression.

>>> x = Real('x')
>>> x.is_real()
True
>>> (x + 1).is_real()
True

Reimplemented in RatNumRef.

Definition at line 2457 of file z3py.py.

2457  def is_real(self):
2458  """Return `True` if `self` is an real expression.
2459 
2460  >>> x = Real('x')
2461  >>> x.is_real()
2462  True
2463  >>> (x + 1).is_real()
2464  True
2465  """
2466  return self.sort().is_real()
2467 
def is_real(a)
Definition: z3py.py:2755

◆ sort()

def sort (   self)
Return the sort (type) of the arithmetical expression `self`.

>>> Int('x').sort()
Int
>>> (Real('x') + 1).sort()
Real

Reimplemented from ExprRef.

Definition at line 2433 of file z3py.py.

2433  def sort(self):
2434  """Return the sort (type) of the arithmetical expression `self`.
2435 
2436  >>> Int('x').sort()
2437  Int
2438  >>> (Real('x') + 1).sort()
2439  Real
2440  """
2441  return ArithSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
2442 
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by FPNumRef.as_string(), ArrayRef.domain(), ArrayRef.domain_n(), FPRef.ebits(), ArithRef.is_int(), ArithRef.is_real(), ArrayRef.range(), FPRef.sbits(), BitVecRef.size(), and ExprRef.sort_kind().