Z3
 
Loading...
Searching...
No Matches
Data Structures | Public Member Functions | Friends
expr Class Reference

A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort. More...

#include <z3++.h>

+ Inheritance diagram for expr:

Data Structures

class  iterator
 

Public Member Functions

 expr (context &c)
 
 expr (context &c, Z3_ast n)
 
sort get_sort () const
 Return the sort of this expression.
 
bool is_bool () const
 Return true if this is a Boolean expression.
 
bool is_int () const
 Return true if this is an integer expression.
 
bool is_real () const
 Return true if this is a real expression.
 
bool is_arith () const
 Return true if this is an integer or real expression.
 
bool is_bv () const
 Return true if this is a Bit-vector expression.
 
bool is_array () const
 Return true if this is a Array expression.
 
bool is_datatype () const
 Return true if this is a Datatype expression.
 
bool is_relation () const
 Return true if this is a Relation expression.
 
bool is_seq () const
 Return true if this is a sequence expression.
 
bool is_re () const
 Return true if this is a regular expression.
 
bool is_finite_domain () const
 Return true if this is a Finite-domain expression.
 
bool is_fpa () const
 Return true if this is a FloatingPoint expression. .
 
bool is_numeral () const
 Return true if this expression is a numeral. Specialized functions also return representations for the numerals as small integers, 64 bit integers or rational or decimal strings.
 
bool is_numeral_i64 (int64_t &i) const
 
bool is_numeral_u64 (uint64_t &i) const
 
bool is_numeral_i (int &i) const
 
bool is_numeral_u (unsigned &i) const
 
bool is_numeral (std::string &s) const
 
bool is_numeral (std::string &s, unsigned precision) const
 
bool is_numeral (double &d) const
 
bool as_binary (std::string &s) const
 
double as_double () const
 
uint64_t as_uint64 () const
 
int64_t as_int64 () const
 
bool is_app () const
 Return true if this expression is an application.
 
bool is_const () const
 Return true if this expression is a constant (i.e., an application with 0 arguments).
 
bool is_quantifier () const
 Return true if this expression is a quantifier.
 
bool is_forall () const
 Return true if this expression is a universal quantifier.
 
bool is_exists () const
 Return true if this expression is an existential quantifier.
 
bool is_lambda () const
 Return true if this expression is a lambda expression.
 
bool is_var () const
 Return true if this expression is a variable.
 
bool is_algebraic () const
 Return true if expression is an algebraic number.
 
bool is_well_sorted () const
 Return true if this expression is well sorted (aka type correct).
 
expr mk_is_inf () const
 Return Boolean expression to test for whether an FP expression is inf.
 
expr mk_is_nan () const
 Return Boolean expression to test for whether an FP expression is a NaN.
 
expr mk_is_normal () const
 Return Boolean expression to test for whether an FP expression is a normal.
 
expr mk_is_subnormal () const
 Return Boolean expression to test for whether an FP expression is a subnormal.
 
expr mk_is_zero () const
 Return Boolean expression to test for whether an FP expression is a zero.
 
expr mk_to_ieee_bv () const
 Convert this fpa into an IEEE BV.
 
expr mk_from_ieee_bv (sort const &s) const
 Convert this IEEE BV into a fpa.
 
std::string get_decimal_string (int precision) const
 Return string representation of numeral or algebraic number This method assumes the expression is numeral or algebraic.
 
expr algebraic_lower (unsigned precision) const
 
expr algebraic_upper (unsigned precision) const
 
expr_vector algebraic_poly () const
 Return coefficients for p of an algebraic number (root-obj p i)
 
unsigned algebraic_i () const
 Return i of an algebraic number (root-obj p i)
 
unsigned id () const
 retrieve unique identifier for expression.
 
int get_numeral_int () const
 Return int value of numeral, throw if result cannot fit in machine int.
 
unsigned get_numeral_uint () const
 Return uint value of numeral, throw if result cannot fit in machine uint.
 
int64_t get_numeral_int64 () const
 Return int64_t value of numeral, throw if result cannot fit in int64_t.
 
uint64_t get_numeral_uint64 () const
 Return uint64_t value of numeral, throw if result cannot fit in uint64_t.
 
Z3_lbool bool_value () const
 
expr numerator () const
 
expr denominator () const
 
bool is_string_value () const
 Return true if this expression is a string literal. The string can be accessed using get_string() and get_escaped_string()
 
std::string get_string () const
 for a string value expression return an escaped string value.
 
std::u32string get_u32string () const
 for a string value expression return an unespaced string value.
 
 operator Z3_app () const
 
func_decl decl () const
 Return the declaration associated with this application. This method assumes the expression is an application.
 
unsigned num_args () const
 Return the number of arguments in this application. This method assumes the expression is an application.
 
expr arg (unsigned i) const
 Return the i-th argument of this application. This method assumes the expression is an application.
 
expr_vector args () const
 Return a vector of all the arguments of this application. This method assumes the expression is an application.
 
expr update (expr_vector const &args) const
 Update the arguments of this application. Return a new expression with the same function declaration and updated arguments. The number of new arguments must match the current number of arguments.
 
expr body () const
 Return the 'body' of this quantifier.
 
bool is_true () const
 
bool is_false () const
 
bool is_not () const
 
bool is_and () const
 
bool is_or () const
 
bool is_xor () const
 
bool is_implies () const
 
bool is_eq () const
 
bool is_ite () const
 
bool is_distinct () const
 
expr rotate_left (unsigned i) const
 
expr rotate_right (unsigned i) const
 
expr repeat (unsigned i) const
 
expr extract (unsigned hi, unsigned lo) const
 
expr bit2bool (unsigned i) const
 
unsigned lo () const
 
unsigned hi () const
 
expr extract (expr const &offset, expr const &length) const
 sequence and regular expression operations.
 
expr replace (expr const &src, expr const &dst) const
 
expr unit () const
 
expr contains (expr const &s) const
 
expr at (expr const &index) const
 
expr nth (expr const &index) const
 
expr length () const
 
expr stoi () const
 
expr itos () const
 
expr ubvtos () const
 
expr sbvtos () const
 
expr char_to_int () const
 
expr char_to_bv () const
 
expr char_from_bv () const
 
expr is_digit () const
 
expr loop (unsigned lo)
 create a looping regular expression.
 
expr loop (unsigned lo, unsigned hi)
 
expr operator[] (expr const &index) const
 
expr operator[] (expr_vector const &index) const
 
expr simplify () const
 Return a simplified version of this expression.
 
expr simplify (params const &p) const
 Return a simplified version of this expression. The parameter p is a set of parameters for the Z3 simplifier.
 
expr substitute (expr_vector const &src, expr_vector const &dst)
 Apply substitution. Replace src expressions by dst.
 
expr substitute (expr_vector const &dst)
 Apply substitution. Replace bound variables by expressions.
 
expr substitute (func_decl_vector const &funs, expr_vector const &bodies)
 Apply function substitution by macro definitions.

 
iterator begin ()
 
iterator end ()
 
- Public Member Functions inherited from ast
 ast (context &c)
 
 ast (context &c, Z3_ast n)
 
 ast (ast const &s)
 
 ~ast () override
 
 operator Z3_ast () const
 
 operator bool () const
 
astoperator= (ast const &s)
 
Z3_ast_kind kind () const
 
unsigned hash () const
 
std::string to_string () const
 
- Public Member Functions inherited from object
 object (context &c)
 
virtual ~object ()=default
 
contextctx () const
 
Z3_error_code check_error () const
 

Friends

expr operator! (expr const &a)
 Return an expression representing not(a).
 
expr operator&& (expr const &a, expr const &b)
 Return an expression representing a and b.
 
expr operator&& (expr const &a, bool b)
 Return an expression representing a and b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.
 
expr operator&& (bool a, expr const &b)
 Return an expression representing a and b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.
 
expr operator|| (expr const &a, expr const &b)
 Return an expression representing a or b.
 
expr operator|| (expr const &a, bool b)
 Return an expression representing a or b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.
 
expr operator|| (bool a, expr const &b)
 Return an expression representing a or b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.
 
expr implies (expr const &a, expr const &b)
 
expr implies (expr const &a, bool b)
 
expr implies (bool a, expr const &b)
 
expr mk_or (expr_vector const &args)
 
expr mk_xor (expr_vector const &args)
 
expr mk_and (expr_vector const &args)
 
expr ite (expr const &c, expr const &t, expr const &e)
 Create the if-then-else expression ite(c, t, e)
 
expr distinct (expr_vector const &args)
 
expr concat (expr const &a, expr const &b)
 
expr concat (expr_vector const &args)
 
expr operator== (expr const &a, expr const &b)
 
expr operator== (expr const &a, int b)
 
expr operator== (int a, expr const &b)
 
expr operator!= (expr const &a, expr const &b)
 
expr operator!= (expr const &a, int b)
 
expr operator!= (int a, expr const &b)
 
expr operator+ (expr const &a, expr const &b)
 
expr operator+ (expr const &a, int b)
 
expr operator+ (int a, expr const &b)
 
expr sum (expr_vector const &args)
 
expr operator* (expr const &a, expr const &b)
 
expr operator* (expr const &a, int b)
 
expr operator* (int a, expr const &b)
 
expr pw (expr const &a, expr const &b)
 
expr pw (expr const &a, int b)
 
expr pw (int a, expr const &b)
 
expr mod (expr const &a, expr const &b)
 
expr mod (expr const &a, int b)
 
expr mod (int a, expr const &b)
 
expr rem (expr const &a, expr const &b)
 
expr rem (expr const &a, int b)
 
expr rem (int a, expr const &b)
 
expr is_int (expr const &e)
 
expr operator/ (expr const &a, expr const &b)
 
expr operator/ (expr const &a, int b)
 
expr operator/ (int a, expr const &b)
 
expr operator- (expr const &a)
 
expr operator- (expr const &a, expr const &b)
 
expr operator- (expr const &a, int b)
 
expr operator- (int a, expr const &b)
 
expr operator<= (expr const &a, expr const &b)
 
expr operator<= (expr const &a, int b)
 
expr operator<= (int a, expr const &b)
 
expr operator>= (expr const &a, expr const &b)
 
expr operator>= (expr const &a, int b)
 
expr operator>= (int a, expr const &b)
 
expr operator< (expr const &a, expr const &b)
 
expr operator< (expr const &a, int b)
 
expr operator< (int a, expr const &b)
 
expr operator> (expr const &a, expr const &b)
 
expr operator> (expr const &a, int b)
 
expr operator> (int a, expr const &b)
 
expr pble (expr_vector const &es, int const *coeffs, int bound)
 
expr pbge (expr_vector const &es, int const *coeffs, int bound)
 
expr pbeq (expr_vector const &es, int const *coeffs, int bound)
 
expr atmost (expr_vector const &es, unsigned bound)
 
expr atleast (expr_vector const &es, unsigned bound)
 
expr operator& (expr const &a, expr const &b)
 
expr operator& (expr const &a, int b)
 
expr operator& (int a, expr const &b)
 
expr operator^ (expr const &a, expr const &b)
 
expr operator^ (expr const &a, int b)
 
expr operator^ (int a, expr const &b)
 
expr operator| (expr const &a, expr const &b)
 
expr operator| (expr const &a, int b)
 
expr operator| (int a, expr const &b)
 
expr nand (expr const &a, expr const &b)
 
expr nor (expr const &a, expr const &b)
 
expr xnor (expr const &a, expr const &b)
 
expr min (expr const &a, expr const &b)
 
expr max (expr const &a, expr const &b)
 
expr bv2int (expr const &a, bool is_signed)
 bit-vector and integer conversions.
 
expr int2bv (unsigned n, expr const &a)
 
expr bvadd_no_overflow (expr const &a, expr const &b, bool is_signed)
 bit-vector overflow/underflow checks
 
expr bvadd_no_underflow (expr const &a, expr const &b)
 
expr bvsub_no_overflow (expr const &a, expr const &b)
 
expr bvsub_no_underflow (expr const &a, expr const &b, bool is_signed)
 
expr bvsdiv_no_overflow (expr const &a, expr const &b)
 
expr bvneg_no_overflow (expr const &a)
 
expr bvmul_no_overflow (expr const &a, expr const &b, bool is_signed)
 
expr bvmul_no_underflow (expr const &a, expr const &b)
 
expr bvredor (expr const &a)
 
expr bvredand (expr const &a)
 
expr abs (expr const &a)
 
expr sqrt (expr const &a, expr const &rm)
 
expr fp_eq (expr const &a, expr const &b)
 
expr operator~ (expr const &a)
 
expr fma (expr const &a, expr const &b, expr const &c, expr const &rm)
 FloatingPoint fused multiply-add.
 
expr fpa_fp (expr const &sgn, expr const &exp, expr const &sig)
 Create an expression of FloatingPoint sort from three bit-vector expressions.
 
expr fpa_to_sbv (expr const &t, unsigned sz)
 Conversion of a floating-point term into a signed bit-vector.
 
expr fpa_to_ubv (expr const &t, unsigned sz)
 Conversion of a floating-point term into an unsigned bit-vector.
 
expr sbv_to_fpa (expr const &t, sort s)
 Conversion of a signed bit-vector term into a floating-point.
 
expr ubv_to_fpa (expr const &t, sort s)
 Conversion of an unsigned bit-vector term into a floating-point.
 
expr fpa_to_fpa (expr const &t, sort s)
 Conversion of a floating-point term into another floating-point.
 
expr round_fpa_to_closest_integer (expr const &t)
 Round a floating-point term into its closest integer.
 
expr range (expr const &lo, expr const &hi)
 

Additional Inherited Members

- Protected Attributes inherited from ast
Z3_ast m_ast
 
- Protected Attributes inherited from object
contextm_ctx
 

Detailed Description

A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort.

Definition at line 858 of file z3++.h.

Constructor & Destructor Documentation

◆ expr() [1/2]

expr ( context c)
inline

Definition at line 860 of file z3++.h.

860:ast(c) {}
ast(context &c)
Definition z3++.h:602

◆ expr() [2/2]

expr ( context c,
Z3_ast  n 
)
inline

Definition at line 861 of file z3++.h.

861:ast(c, reinterpret_cast<Z3_ast>(n)) {}
System.IntPtr Z3_ast

Member Function Documentation

◆ algebraic_i()

unsigned algebraic_i ( ) const
inline

Return i of an algebraic number (root-obj p i)

Definition at line 1094 of file z3++.h.

1094 {
1095 assert(is_algebraic());
1096 unsigned i = Z3_algebraic_get_i(ctx(), m_ast);
1097 check_error();
1098 return i;
1099 }
Z3_ast m_ast
Definition z3++.h:600
bool is_algebraic() const
Return true if expression is an algebraic number.
Definition z3++.h:976
Z3_error_code check_error() const
Definition z3++.h:522
context & ctx() const
Definition z3++.h:521
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)
Return which root of the polynomial the algebraic number represents.

◆ algebraic_lower()

expr algebraic_lower ( unsigned  precision) const
inline

Retrieve lower and upper bounds for algebraic numerals based on a decimal precision

Definition at line 1067 of file z3++.h.

1067 {
1068 assert(is_algebraic());
1069 Z3_ast r = Z3_get_algebraic_number_lower(ctx(), m_ast, precision);
1070 check_error();
1071 return expr(ctx(), r);
1072 }
expr(context &c)
Definition z3++.h:860
Z3_ast Z3_API Z3_get_algebraic_number_lower(Z3_context c, Z3_ast a, unsigned precision)
Return a lower bound for the given real algebraic number. The interval isolating the number is smalle...

◆ algebraic_poly()

expr_vector algebraic_poly ( ) const
inline

Return coefficients for p of an algebraic number (root-obj p i)

Definition at line 1084 of file z3++.h.

1084 {
1085 assert(is_algebraic());
1087 check_error();
1088 return expr_vector(ctx(), r);
1089 }
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)
Return the coefficients of the defining polynomial.
System.IntPtr Z3_ast_vector
ast_vector_tpl< expr > expr_vector
Definition z3++.h:76

◆ algebraic_upper()

expr algebraic_upper ( unsigned  precision) const
inline

Definition at line 1074 of file z3++.h.

1074 {
1075 assert(is_algebraic());
1076 Z3_ast r = Z3_get_algebraic_number_upper(ctx(), m_ast, precision);
1077 check_error();
1078 return expr(ctx(), r);
1079 }
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...

◆ arg()

expr arg ( unsigned  i) const
inline

Return the i-th argument of this application. This method assumes the expression is an application.

Precondition
is_app()
i < num_args()

Definition at line 1255 of file z3++.h.

1255{ Z3_ast r = Z3_get_app_arg(ctx(), *this, i); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i)
Return the i-th argument of the given application.

Referenced by AstRef::__bool__(), expr::args(), ExprRef::children(), and expr::iterator::operator*().

◆ args()

expr_vector args ( ) const
inline

Return a vector of all the arguments of this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1262 of file z3++.h.

1262 {
1263 expr_vector vec(ctx());
1264 unsigned argCnt = num_args();
1265 for (unsigned i = 0; i < argCnt; i++)
1266 vec.push_back(arg(i));
1267 return vec;
1268 }
unsigned num_args() const
Return the number of arguments in this application. This method assumes the expression is an applicat...
Definition z3++.h:1247
expr arg(unsigned i) const
Return the i-th argument of this application. This method assumes the expression is an application.
Definition z3++.h:1255

Referenced by expr::update().

◆ as_binary()

bool as_binary ( std::string &  s) const
inline

Definition at line 936 of file z3++.h.

936{ if (!is_numeral()) return false; s = Z3_get_numeral_binary_string(ctx(), m_ast); check_error(); return true; }
bool is_numeral() const
Return true if this expression is a numeral. Specialized functions also return representations for th...
Definition z3++.h:928
Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a)
Return numeral value, as a binary string of a numeric constant term.

◆ as_double()

double as_double ( ) const
inline

Definition at line 938 of file z3++.h.

938{ double d = 0; is_numeral(d); return d; }

◆ as_int64()

int64_t as_int64 ( ) const
inline

Definition at line 940 of file z3++.h.

940{ int64_t r = 0; is_numeral_i64(r); return r; }
bool is_numeral_i64(int64_t &i) const
Definition z3++.h:929

◆ as_uint64()

uint64_t as_uint64 ( ) const
inline

Definition at line 939 of file z3++.h.

939{ uint64_t r = 0; is_numeral_u64(r); return r; }
bool is_numeral_u64(uint64_t &i) const
Definition z3++.h:930

◆ at()

expr at ( expr const index) const
inline

Definition at line 1545 of file z3++.h.

1545 {
1546 check_context(*this, index);
1547 Z3_ast r = Z3_mk_seq_at(ctx(), *this, index);
1548 check_error();
1549 return expr(ctx(), r);
1550 }
friend void check_context(object const &a, object const &b)
Definition z3++.h:525
Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index)
Retrieve from s the unit sequence positioned at position index. The sequence is empty if the index is...

◆ begin()

iterator begin ( )
inline

Definition at line 1674 of file z3++.h.

1674{ return iterator(*this, 0); }

◆ bit2bool()

expr bit2bool ( unsigned  i) const
inline

Definition at line 1475 of file z3++.h.

1475{ Z3_ast r = Z3_mk_bit2bool(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_error_code check_error() const
Auxiliary method used to check for API usage errors.
Definition z3++.h:222
Z3_ast Z3_API Z3_mk_bit2bool(Z3_context c, unsigned i, Z3_ast t1)
Extracts the bit at position i of a bit-vector and yields a boolean.

◆ body()

expr body ( ) const
inline

Return the 'body' of this quantifier.

Precondition
is_quantifier()

Definition at line 1285 of file z3++.h.

1285{ assert(is_quantifier()); Z3_ast r = Z3_get_quantifier_body(ctx(), *this); check_error(); return expr(ctx(), r); }
bool is_quantifier() const
Return true if this expression is a quantifier.
Definition z3++.h:954
Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a)
Return body of quantifier.

Referenced by QuantifierRef::children().

◆ bool_value()

Z3_lbool bool_value ( ) const
inline

Definition at line 1180 of file z3++.h.

1180 {
1181 return Z3_get_bool_value(ctx(), m_ast);
1182 }
Z3_lbool Z3_API Z3_get_bool_value(Z3_context c, Z3_ast a)
Return Z3_L_TRUE if a is true, Z3_L_FALSE if it is false, and Z3_L_UNDEF otherwise.

◆ char_from_bv()

expr char_from_bv ( ) const
inline

Definition at line 1592 of file z3++.h.

1592 {
1593 Z3_ast r = Z3_mk_char_from_bv(ctx(), *this);
1594 check_error();
1595 return expr(ctx(), r);
1596 }
Z3_ast Z3_API Z3_mk_char_from_bv(Z3_context c, Z3_ast bv)
Create a character from a bit-vector (code point).

◆ char_to_bv()

expr char_to_bv ( ) const
inline

Definition at line 1587 of file z3++.h.

1587 {
1588 Z3_ast r = Z3_mk_char_to_bv(ctx(), *this);
1589 check_error();
1590 return expr(ctx(), r);
1591 }
Z3_ast Z3_API Z3_mk_char_to_bv(Z3_context c, Z3_ast ch)
Create a bit-vector (code point) from character.

◆ char_to_int()

expr char_to_int ( ) const
inline

Definition at line 1582 of file z3++.h.

1582 {
1583 Z3_ast r = Z3_mk_char_to_int(ctx(), *this);
1584 check_error();
1585 return expr(ctx(), r);
1586 }
Z3_ast Z3_API Z3_mk_char_to_int(Z3_context c, Z3_ast ch)
Create an integer (code point) from character.

◆ contains()

expr contains ( expr const s) const
inline

Definition at line 1539 of file z3++.h.

1539 {
1540 check_context(*this, s);
1541 Z3_ast r = Z3_mk_seq_contains(ctx(), *this, s);
1542 check_error();
1543 return expr(ctx(), r);
1544 }
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)
Check if container contains containee.

◆ decl()

func_decl decl ( ) const
inline

Return the declaration associated with this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1240 of file z3++.h.

1240{ Z3_func_decl f = Z3_get_app_decl(ctx(), *this); check_error(); return func_decl(ctx(), f); }
Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a)
Return the declaration of a constant or function application.
System.IntPtr Z3_func_decl

Referenced by expr::hi(), expr::is_and(), expr::is_distinct(), expr::is_eq(), expr::is_false(), expr::is_implies(), expr::is_ite(), expr::is_not(), expr::is_or(), expr::is_true(), expr::is_xor(), expr::lo(), and ExprRef::params().

◆ denominator()

expr denominator ( ) const
inline

Definition at line 1192 of file z3++.h.

1192 {
1193 assert(is_numeral());
1195 check_error();
1196 return expr(ctx(),r);
1197 }
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef::denominator_as_long(), and RatNumRef::is_int_value().

◆ end()

iterator end ( )
inline

Definition at line 1675 of file z3++.h.

1675{ return iterator(*this, is_app() ? num_args() : 0); }
bool is_app() const
Return true if this expression is an application.
Definition z3++.h:946

◆ extract() [1/2]

expr extract ( expr const offset,
expr const length 
) const
inline

sequence and regular expression operations.

  • is overloaded as sequence concatenation and regular expression union. concat is overloaded to handle sequences and regular expressions

Definition at line 1524 of file z3++.h.

1524 {
1525 check_context(*this, offset); check_context(offset, length);
1526 Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
1527 }
expr length() const
Definition z3++.h:1557
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.

◆ extract() [2/2]

expr extract ( unsigned  hi,
unsigned  lo 
) const
inline

Definition at line 1474 of file z3++.h.

1474{ Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
unsigned hi() const
Definition z3++.h:1477
unsigned lo() const
Definition z3++.h:1476
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...

◆ get_decimal_string()

std::string get_decimal_string ( int  precision) const
inline

Return string representation of numeral or algebraic number This method assumes the expression is numeral or algebraic.

Precondition
is_numeral() || is_algebraic()

Definition at line 1059 of file z3++.h.

1059 {
1060 assert(is_numeral() || is_algebraic());
1061 return std::string(Z3_get_numeral_decimal_string(ctx(), m_ast, precision));
1062 }
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ get_numeral_int()

int get_numeral_int ( ) const
inline

Return int value of numeral, throw if result cannot fit in machine int.

It only makes sense to use this function if the caller can ensure that the result is an integer or if exceptions are enabled. If exceptions are disabled, then use the is_numeral_i function.

Precondition
is_numeral()

Definition at line 1116 of file z3++.h.

1116 {
1117 int result = 0;
1118 if (!is_numeral_i(result)) {
1119 assert(ctx().enable_exceptions());
1120 if (!ctx().enable_exceptions()) return 0;
1121 Z3_THROW(exception("numeral does not fit in machine int"));
1122 }
1123 return result;
1124 }
bool is_numeral_i(int &i) const
Definition z3++.h:931
#define Z3_THROW(x)
Definition z3++.h:133

◆ get_numeral_int64()

int64_t get_numeral_int64 ( ) const
inline

Return int64_t value of numeral, throw if result cannot fit in int64_t.

Precondition
is_numeral()

Definition at line 1152 of file z3++.h.

1152 {
1153 assert(is_numeral());
1154 int64_t result = 0;
1155 if (!is_numeral_i64(result)) {
1156 assert(ctx().enable_exceptions());
1157 if (!ctx().enable_exceptions()) return 0;
1158 Z3_THROW(exception("numeral does not fit in machine int64_t"));
1159 }
1160 return result;
1161 }

◆ get_numeral_uint()

unsigned get_numeral_uint ( ) const
inline

Return uint value of numeral, throw if result cannot fit in machine uint.

It only makes sense to use this function if the caller can ensure that the result is an integer or if exceptions are enabled. If exceptions are disabled, then use the is_numeral_u function.

Precondition
is_numeral()

Definition at line 1135 of file z3++.h.

1135 {
1136 assert(is_numeral());
1137 unsigned result = 0;
1138 if (!is_numeral_u(result)) {
1139 assert(ctx().enable_exceptions());
1140 if (!ctx().enable_exceptions()) return 0;
1141 Z3_THROW(exception("numeral does not fit in machine uint"));
1142 }
1143 return result;
1144 }
bool is_numeral_u(unsigned &i) const
Definition z3++.h:932

◆ get_numeral_uint64()

uint64_t get_numeral_uint64 ( ) const
inline

Return uint64_t value of numeral, throw if result cannot fit in uint64_t.

Precondition
is_numeral()

Definition at line 1169 of file z3++.h.

1169 {
1170 assert(is_numeral());
1171 uint64_t result = 0;
1172 if (!is_numeral_u64(result)) {
1173 assert(ctx().enable_exceptions());
1174 if (!ctx().enable_exceptions()) return 0;
1175 Z3_THROW(exception("numeral does not fit in machine uint64_t"));
1176 }
1177 return result;
1178 }

◆ get_sort()

sort get_sort ( ) const
inline

Return the sort of this expression.

Definition at line 866 of file z3++.h.

866{ Z3_sort s = Z3_get_sort(*m_ctx, m_ast); check_error(); return sort(*m_ctx, s); }
context * m_ctx
Definition z3++.h:517
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.
System.IntPtr Z3_sort

Referenced by expr::is_arith(), expr::is_array(), expr::is_bool(), expr::is_bv(), expr::is_datatype(), expr::is_finite_domain(), expr::is_fpa(), expr::is_int(), expr::is_re(), expr::is_real(), expr::is_relation(), expr::is_seq(), and ModelRef::sorts().

◆ get_string()

std::string get_string ( ) const
inline

for a string value expression return an escaped string value.

Precondition
expression is for a string value.

Definition at line 1211 of file z3++.h.

1211 {
1212 assert(is_string_value());
1213 char const* s = Z3_get_string(ctx(), m_ast);
1214 check_error();
1215 return std::string(s);
1216 }
bool is_string_value() const
Return true if this expression is a string literal. The string can be accessed using get_string() and...
Definition z3++.h:1204
Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s)
Retrieve the string constant stored in s. Characters outside the basic printable ASCII range are esca...

◆ get_u32string()

std::u32string get_u32string ( ) const
inline

for a string value expression return an unespaced string value.

Precondition
expression is for a string value.

Definition at line 1223 of file z3++.h.

1223 {
1224 assert(is_string_value());
1225 unsigned n = Z3_get_string_length(ctx(), m_ast);
1226 std::u32string s;
1227 s.resize(n);
1228 Z3_get_string_contents(ctx(), m_ast, n, (unsigned*)s.data());
1229 return s;
1230 }
void Z3_API Z3_get_string_contents(Z3_context c, Z3_ast s, unsigned length, unsigned contents[])
Retrieve the unescaped string constant stored in s.
unsigned Z3_API Z3_get_string_length(Z3_context c, Z3_ast s)
Retrieve the length of the unescaped string constant stored in s.

◆ hi()

unsigned hi ( ) const
inline

Definition at line 1477 of file z3++.h.

1477{ assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 0)); }
func_decl decl() const
Return the declaration associated with this application. This method assumes the expression is an app...
Definition z3++.h:1240
unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d)
Return the number of parameters associated with a declaration.
int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the integer value associated with an integer parameter.

Referenced by expr::extract(), and expr::loop().

◆ id()

unsigned id ( ) const
inline

retrieve unique identifier for expression.

Definition at line 1104 of file z3++.h.

1104{ unsigned r = Z3_get_ast_id(ctx(), m_ast); check_error(); return r; }
unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t)
Return a unique identifier for t. The identifier is unique up to structural equality....

◆ is_algebraic()

bool is_algebraic ( ) const
inline

Return true if expression is an algebraic number.

Definition at line 976 of file z3++.h.

976{ return Z3_is_algebraic_number(ctx(), m_ast); }
bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a)
Return true if the given AST is a real algebraic number.

Referenced by expr::algebraic_i(), expr::algebraic_lower(), expr::algebraic_poly(), expr::algebraic_upper(), and expr::get_decimal_string().

◆ is_and()

bool is_and ( ) const
inline

Definition at line 1354 of file z3++.h.

1354{ return is_app() && Z3_OP_AND == decl().decl_kind(); }
Z3_decl_kind decl_kind() const
Definition z3++.h:822
@ Z3_OP_AND
Definition z3_api.h:969

◆ is_app()

bool is_app ( ) const
inline

Return true if this expression is an application.

Definition at line 946 of file z3++.h.

946{ return kind() == Z3_APP_AST || kind() == Z3_NUMERAL_AST; }
Z3_ast_kind kind() const
Definition z3++.h:616
@ Z3_APP_AST
Definition z3_api.h:144
@ Z3_NUMERAL_AST
Definition z3_api.h:143

Referenced by expr::end(), expr::hi(), expr::is_and(), expr::is_const(), expr::is_distinct(), expr::is_eq(), expr::is_false(), expr::is_implies(), expr::is_ite(), expr::is_not(), expr::is_or(), expr::is_true(), expr::is_xor(), expr::lo(), and expr::operator Z3_app().

◆ is_arith()

bool is_arith ( ) const
inline

Return true if this is an integer or real expression.

Definition at line 883 of file z3++.h.

883{ return get_sort().is_arith(); }
sort get_sort() const
Return the sort of this expression.
Definition z3++.h:866
bool is_arith() const
Return true if this sort is the Integer or Real sort.
Definition z3++.h:739

◆ is_array()

bool is_array ( ) const
inline

Return true if this is a Array expression.

Definition at line 891 of file z3++.h.

891{ return get_sort().is_array(); }
bool is_array() const
Return true if this sort is a Array sort.
Definition z3++.h:747

Referenced by expr::operator[]().

◆ is_bool()

bool is_bool ( ) const
inline

Return true if this is a Boolean expression.

Definition at line 871 of file z3++.h.

871{ return get_sort().is_bool(); }
bool is_bool() const
Return true if this sort is the Boolean sort.
Definition z3++.h:727

Referenced by solver::add(), optimize::add(), optimize::add(), solver::add(), optimize::add(), optimize::add_soft(), and optimize::add_soft().

◆ is_bv()

bool is_bv ( ) const
inline

Return true if this is a Bit-vector expression.

Definition at line 887 of file z3++.h.

887{ return get_sort().is_bv(); }
bool is_bv() const
Return true if this sort is a Bit-vector sort.
Definition z3++.h:743

Referenced by expr::mk_from_ieee_bv().

◆ is_const()

bool is_const ( ) const
inline

Return true if this expression is a constant (i.e., an application with 0 arguments).

Definition at line 950 of file z3++.h.

950{ return is_app() && num_args() == 0; }

Referenced by solver::add().

◆ is_datatype()

bool is_datatype ( ) const
inline

Return true if this is a Datatype expression.

Definition at line 895 of file z3++.h.

895{ return get_sort().is_datatype(); }
bool is_datatype() const
Return true if this sort is a Datatype sort.
Definition z3++.h:751

◆ is_digit()

expr is_digit ( ) const
inline

Definition at line 1597 of file z3++.h.

1597 {
1598 Z3_ast r = Z3_mk_char_is_digit(ctx(), *this);
1599 check_error();
1600 return expr(ctx(), r);
1601 }
Z3_ast Z3_API Z3_mk_char_is_digit(Z3_context c, Z3_ast ch)
Create a check if the character is a digit.

◆ is_distinct()

bool is_distinct ( ) const
inline

Definition at line 1360 of file z3++.h.

1360{ return is_app() && Z3_OP_DISTINCT == decl().decl_kind(); }
@ Z3_OP_DISTINCT
Definition z3_api.h:967

◆ is_eq()

bool is_eq ( ) const
inline

Definition at line 1358 of file z3++.h.

1358{ return is_app() && Z3_OP_EQ == decl().decl_kind(); }
@ Z3_OP_EQ
Definition z3_api.h:966

◆ is_exists()

bool is_exists ( ) const
inline

Return true if this expression is an existential quantifier.

Definition at line 963 of file z3++.h.

963{ return Z3_is_quantifier_exists(ctx(), m_ast); }
bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a)
Determine if ast is an existential quantifier.

◆ is_false()

bool is_false ( ) const
inline

Definition at line 1352 of file z3++.h.

1352{ return is_app() && Z3_OP_FALSE == decl().decl_kind(); }
@ Z3_OP_FALSE
Definition z3_api.h:965

◆ is_finite_domain()

bool is_finite_domain ( ) const
inline

Return true if this is a Finite-domain expression.

Remarks
Finite-domain is special kind of interpreted sort: is_bool(), is_bv() and is_finite_domain() are mutually exclusive.

Definition at line 917 of file z3++.h.

917{ return get_sort().is_finite_domain(); }
bool is_finite_domain() const
Return true if this sort is a Finite domain sort.
Definition z3++.h:767

◆ is_forall()

bool is_forall ( ) const
inline

Return true if this expression is a universal quantifier.

Definition at line 959 of file z3++.h.

959{ return Z3_is_quantifier_forall(ctx(), m_ast); }
bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a)
Determine if an ast is a universal quantifier.

◆ is_fpa()

bool is_fpa ( ) const
inline

Return true if this is a FloatingPoint expression. .

Definition at line 921 of file z3++.h.

921{ return get_sort().is_fpa(); }
bool is_fpa() const
Return true if this sort is a Floating point sort.
Definition z3++.h:771

Referenced by expr::mk_is_inf(), expr::mk_is_nan(), expr::mk_is_normal(), expr::mk_is_subnormal(), expr::mk_is_zero(), and expr::mk_to_ieee_bv().

◆ is_implies()

bool is_implies ( ) const
inline

Definition at line 1357 of file z3++.h.

1357{ return is_app() && Z3_OP_IMPLIES == decl().decl_kind(); }
@ Z3_OP_IMPLIES
Definition z3_api.h:974

◆ is_int()

bool is_int ( ) const
inline

Return true if this is an integer expression.

Definition at line 875 of file z3++.h.

875{ return get_sort().is_int(); }
bool is_int() const
Return true if this sort is the Integer sort.
Definition z3++.h:731

Referenced by IntNumRef::as_long(), and ArithSortRef::subsort().

◆ is_ite()

bool is_ite ( ) const
inline

Definition at line 1359 of file z3++.h.

1359{ return is_app() && Z3_OP_ITE == decl().decl_kind(); }
@ Z3_OP_ITE
Definition z3_api.h:968

◆ is_lambda()

bool is_lambda ( ) const
inline

Return true if this expression is a lambda expression.

Definition at line 967 of file z3++.h.

967{ return Z3_is_lambda(ctx(), m_ast); }
bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a)
Determine if ast is a lambda expression.

Referenced by QuantifierRef::__getitem__(), and QuantifierRef::sort().

◆ is_not()

bool is_not ( ) const
inline

Definition at line 1353 of file z3++.h.

1353{ return is_app() && Z3_OP_NOT == decl().decl_kind(); }
@ Z3_OP_NOT
Definition z3_api.h:973

◆ is_numeral() [1/4]

bool is_numeral ( ) const
inline

Return true if this expression is a numeral. Specialized functions also return representations for the numerals as small integers, 64 bit integers or rational or decimal strings.

Definition at line 928 of file z3++.h.

928{ return kind() == Z3_NUMERAL_AST; }

Referenced by expr::as_binary(), expr::as_double(), expr::denominator(), expr::get_decimal_string(), expr::get_numeral_int64(), expr::get_numeral_uint(), expr::get_numeral_uint64(), and expr::numerator().

◆ is_numeral() [2/4]

bool is_numeral ( double &  d) const
inline

Definition at line 935 of file z3++.h.

935{ if (!is_numeral()) return false; d = Z3_get_numeral_double(ctx(), m_ast); check_error(); return true; }
double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a)
Return numeral as a double.

Referenced by expr::is_numeral().

◆ is_numeral() [3/4]

bool is_numeral ( std::string &  s) const
inline

Definition at line 933 of file z3++.h.

933{ if (!is_numeral()) return false; s = Z3_get_numeral_string(ctx(), m_ast); check_error(); return true; }
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a decimal string of a numeric constant term.

Referenced by expr::is_numeral().

◆ is_numeral() [4/4]

bool is_numeral ( std::string &  s,
unsigned  precision 
) const
inline

Definition at line 934 of file z3++.h.

934{ if (!is_numeral()) return false; s = Z3_get_numeral_decimal_string(ctx(), m_ast, precision); check_error(); return true; }

Referenced by expr::is_numeral().

◆ is_numeral_i()

bool is_numeral_i ( int &  i) const
inline

Definition at line 931 of file z3++.h.

931{ bool r = Z3_get_numeral_int(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_int(Z3_context c, Z3_ast v, int *i)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int....

Referenced by expr::get_numeral_int().

◆ is_numeral_i64()

bool is_numeral_i64 ( int64_t i) const
inline

Definition at line 929 of file z3++.h.

929{ bool r = Z3_get_numeral_int64(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_int64(Z3_context c, Z3_ast v, int64_t *i)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int64_t int....

Referenced by expr::as_int64(), and expr::get_numeral_int64().

◆ is_numeral_u()

bool is_numeral_u ( unsigned &  i) const
inline

Definition at line 932 of file z3++.h.

932{ bool r = Z3_get_numeral_uint(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_uint(Z3_context c, Z3_ast v, unsigned *u)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned int....

Referenced by expr::get_numeral_uint().

◆ is_numeral_u64()

bool is_numeral_u64 ( uint64_t i) const
inline

Definition at line 930 of file z3++.h.

930{ bool r = Z3_get_numeral_uint64(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_uint64(Z3_context c, Z3_ast v, uint64_t *u)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine uint64_t int....

Referenced by expr::as_uint64(), and expr::get_numeral_uint64().

◆ is_or()

bool is_or ( ) const
inline

Definition at line 1355 of file z3++.h.

1355{ return is_app() && Z3_OP_OR == decl().decl_kind(); }
@ Z3_OP_OR
Definition z3_api.h:970

◆ is_quantifier()

bool is_quantifier ( ) const
inline

Return true if this expression is a quantifier.

Definition at line 954 of file z3++.h.

954{ return kind() == Z3_QUANTIFIER_AST; }
@ Z3_QUANTIFIER_AST
Definition z3_api.h:146

Referenced by expr::body().

◆ is_re()

bool is_re ( ) const
inline

Return true if this is a regular expression.

Definition at line 907 of file z3++.h.

907{ return get_sort().is_re(); }
bool is_re() const
Return true if this sort is a regular expression sort.
Definition z3++.h:763

◆ is_real()

bool is_real ( ) const
inline

Return true if this is a real expression.

Definition at line 879 of file z3++.h.

879{ return get_sort().is_real(); }
bool is_real() const
Return true if this sort is the Real sort.
Definition z3++.h:735

◆ is_relation()

bool is_relation ( ) const
inline

Return true if this is a Relation expression.

Definition at line 899 of file z3++.h.

899{ return get_sort().is_relation(); }
bool is_relation() const
Return true if this sort is a Relation sort.
Definition z3++.h:755

◆ is_seq()

bool is_seq ( ) const
inline

Return true if this is a sequence expression.

Definition at line 903 of file z3++.h.

903{ return get_sort().is_seq(); }
bool is_seq() const
Return true if this sort is a Sequence sort.
Definition z3++.h:759

Referenced by expr::operator[]().

◆ is_string_value()

bool is_string_value ( ) const
inline

Return true if this expression is a string literal. The string can be accessed using get_string() and get_escaped_string()

Definition at line 1204 of file z3++.h.

1204{ return Z3_is_string(ctx(), m_ast); }
bool Z3_API Z3_is_string(Z3_context c, Z3_ast s)
Determine if s is a string constant.

Referenced by expr::get_string(), and expr::get_u32string().

◆ is_true()

bool is_true ( ) const
inline

Definition at line 1351 of file z3++.h.

1351{ return is_app() && Z3_OP_TRUE == decl().decl_kind(); }
@ Z3_OP_TRUE
Definition z3_api.h:964

◆ is_var()

bool is_var ( ) const
inline

Return true if this expression is a variable.

Definition at line 972 of file z3++.h.

972{ return kind() == Z3_VAR_AST; }
@ Z3_VAR_AST
Definition z3_api.h:145

◆ is_well_sorted()

bool is_well_sorted ( ) const
inline

Return true if this expression is well sorted (aka type correct).

Definition at line 981 of file z3++.h.

981{ bool r = Z3_is_well_sorted(ctx(), m_ast); check_error(); return r; }
bool Z3_API Z3_is_well_sorted(Z3_context c, Z3_ast t)
Return true if the given expression t is well sorted.

◆ is_xor()

bool is_xor ( ) const
inline

Definition at line 1356 of file z3++.h.

1356{ return is_app() && Z3_OP_XOR == decl().decl_kind(); }
@ Z3_OP_XOR
Definition z3_api.h:972

◆ itos()

expr itos ( ) const
inline

Definition at line 1567 of file z3++.h.

1567 {
1568 Z3_ast r = Z3_mk_int_to_str(ctx(), *this);
1569 check_error();
1570 return expr(ctx(), r);
1571 }
Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)
Integer to string conversion.

◆ length()

expr length ( ) const
inline

Definition at line 1557 of file z3++.h.

1557 {
1558 Z3_ast r = Z3_mk_seq_length(ctx(), *this);
1559 check_error();
1560 return expr(ctx(), r);
1561 }
Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s)
Return the length of the sequence s.

Referenced by expr::extract().

◆ lo()

unsigned lo ( ) const
inline

Definition at line 1476 of file z3++.h.

1476{ assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 1)); }

Referenced by expr::extract(), expr::loop(), and expr::loop().

◆ loop() [1/2]

expr loop ( unsigned  lo)
inline

create a looping regular expression.

Definition at line 1607 of file z3++.h.

1607 {
1608 Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
1609 check_error();
1610 return expr(ctx(), r);
1611 }
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)
Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...

◆ loop() [2/2]

expr loop ( unsigned  lo,
unsigned  hi 
)
inline

Definition at line 1612 of file z3++.h.

1612 {
1613 Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
1614 check_error();
1615 return expr(ctx(), r);
1616 }

◆ mk_from_ieee_bv()

expr mk_from_ieee_bv ( sort const s) const
inline

Convert this IEEE BV into a fpa.

Definition at line 1046 of file z3++.h.

1046 {
1047 assert(is_bv());
1049 check_error();
1050 return expr(ctx(), r);
1051 }
bool is_bv() const
Return true if this is a Bit-vector expression.
Definition z3++.h:887
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)
Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.

◆ mk_is_inf()

expr mk_is_inf ( ) const
inline

Return Boolean expression to test for whether an FP expression is inf.

Definition at line 986 of file z3++.h.

986 {
987 assert(is_fpa());
989 check_error();
990 return expr(ctx(), r);
991 }
bool is_fpa() const
Return true if this is a FloatingPoint expression. .
Definition z3++.h:921
Z3_ast Z3_API Z3_mk_fpa_is_infinite(Z3_context c, Z3_ast t)
Predicate indicating whether t is a floating-point number representing +oo or -oo.

◆ mk_is_nan()

expr mk_is_nan ( ) const
inline

Return Boolean expression to test for whether an FP expression is a NaN.

Definition at line 996 of file z3++.h.

996 {
997 assert(is_fpa());
999 check_error();
1000 return expr(ctx(), r);
1001 }
Z3_ast Z3_API Z3_mk_fpa_is_nan(Z3_context c, Z3_ast t)
Predicate indicating whether t is a NaN.

◆ mk_is_normal()

expr mk_is_normal ( ) const
inline

Return Boolean expression to test for whether an FP expression is a normal.

Definition at line 1006 of file z3++.h.

1006 {
1007 assert(is_fpa());
1009 check_error();
1010 return expr(ctx(), r);
1011 }
Z3_ast Z3_API Z3_mk_fpa_is_normal(Z3_context c, Z3_ast t)
Predicate indicating whether t is a normal floating-point number.

◆ mk_is_subnormal()

expr mk_is_subnormal ( ) const
inline

Return Boolean expression to test for whether an FP expression is a subnormal.

Definition at line 1016 of file z3++.h.

1016 {
1017 assert(is_fpa());
1019 check_error();
1020 return expr(ctx(), r);
1021 }
Z3_ast Z3_API Z3_mk_fpa_is_subnormal(Z3_context c, Z3_ast t)
Predicate indicating whether t is a subnormal floating-point number.

◆ mk_is_zero()

expr mk_is_zero ( ) const
inline

Return Boolean expression to test for whether an FP expression is a zero.

Definition at line 1026 of file z3++.h.

1026 {
1027 assert(is_fpa());
1029 check_error();
1030 return expr(ctx(), r);
1031 }
Z3_ast Z3_API Z3_mk_fpa_is_zero(Z3_context c, Z3_ast t)
Predicate indicating whether t is a floating-point number with zero value, i.e., +zero or -zero.

◆ mk_to_ieee_bv()

expr mk_to_ieee_bv ( ) const
inline

Convert this fpa into an IEEE BV.

Definition at line 1036 of file z3++.h.

1036 {
1037 assert(is_fpa());
1039 check_error();
1040 return expr(ctx(), r);
1041 }
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

◆ nth()

expr nth ( expr const index) const
inline

Definition at line 1551 of file z3++.h.

1551 {
1552 check_context(*this, index);
1553 Z3_ast r = Z3_mk_seq_nth(ctx(), *this, index);
1554 check_error();
1555 return expr(ctx(), r);
1556 }
Z3_ast Z3_API Z3_mk_seq_nth(Z3_context c, Z3_ast s, Z3_ast index)
Retrieve from s the element positioned at position index. The function is under-specified if the inde...

Referenced by expr::operator[]().

◆ num_args()

unsigned num_args ( ) const
inline

Return the number of arguments in this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1247 of file z3++.h.

1247{ unsigned r = Z3_get_app_num_args(ctx(), *this); check_error(); return r; }
unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a)
Return the number of argument of an application. If t is an constant, then the number of arguments is...

Referenced by AstRef::__bool__(), ExprRef::arg(), FuncEntry::arg_value(), expr::args(), FuncEntry::as_list(), ExprRef::children(), expr::end(), expr::is_const(), and ExprRef::update().

◆ numerator()

expr numerator ( ) const
inline

Definition at line 1184 of file z3++.h.

1184 {
1185 assert(is_numeral());
1187 check_error();
1188 return expr(ctx(),r);
1189 }
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef::numerator_as_long().

◆ operator Z3_app()

operator Z3_app ( ) const
inline

Definition at line 1232 of file z3++.h.

1232{ assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }
System.IntPtr Z3_app

◆ operator[]() [1/2]

expr operator[] ( expr const index) const
inline

index operator defined on arrays and sequences.

Definition at line 1621 of file z3++.h.

1621 {
1622 assert(is_array() || is_seq());
1623 if (is_array()) {
1624 return select(*this, index);
1625 }
1626 return nth(index);
1627 }
bool is_array() const
Return true if this is a Array expression.
Definition z3++.h:891
expr nth(expr const &index) const
Definition z3++.h:1551
bool is_seq() const
Return true if this is a sequence expression.
Definition z3++.h:903
expr select(expr const &a, expr const &i)
forward declarations
Definition z3++.h:4098

◆ operator[]() [2/2]

expr operator[] ( expr_vector const index) const
inline

Definition at line 1629 of file z3++.h.

1629 {
1630 return select(*this, index);
1631 }

◆ repeat()

expr repeat ( unsigned  i) const
inline

Definition at line 1464 of file z3++.h.

1464{ Z3_ast r = Z3_mk_repeat(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.

◆ replace()

expr replace ( expr const src,
expr const dst 
) const
inline

Definition at line 1528 of file z3++.h.

1528 {
1529 check_context(*this, src); check_context(src, dst);
1530 Z3_ast r = Z3_mk_seq_replace(ctx(), *this, src, dst);
1531 check_error();
1532 return expr(ctx(), r);
1533 }
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)
Replace the first occurrence of src with dst in s.

◆ rotate_left()

expr rotate_left ( unsigned  i) const
inline

Definition at line 1462 of file z3++.h.

1462{ Z3_ast r = Z3_mk_rotate_left(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_rotate_left(Z3_context c, unsigned i, Z3_ast t1)
Rotate bits of t1 to the left i times.

◆ rotate_right()

expr rotate_right ( unsigned  i) const
inline

Definition at line 1463 of file z3++.h.

1463{ Z3_ast r = Z3_mk_rotate_right(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_rotate_right(Z3_context c, unsigned i, Z3_ast t1)
Rotate bits of t1 to the right i times.

◆ sbvtos()

expr sbvtos ( ) const
inline

Definition at line 1577 of file z3++.h.

1577 {
1578 Z3_ast r = Z3_mk_sbv_to_str(ctx(), *this);
1579 check_error();
1580 return expr(ctx(), r);
1581 }
Z3_ast Z3_API Z3_mk_sbv_to_str(Z3_context c, Z3_ast s)
Signed bit-vector to string conversion.

◆ simplify() [1/2]

expr simplify ( ) const
inline

Return a simplified version of this expression.

Definition at line 1636 of file z3++.h.

1636{ Z3_ast r = Z3_simplify(ctx(), m_ast); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)
Interface to simplifier.

◆ simplify() [2/2]

expr simplify ( params const p) const
inline

Return a simplified version of this expression. The parameter p is a set of parameters for the Z3 simplifier.

Definition at line 1640 of file z3++.h.

1640{ Z3_ast r = Z3_simplify_ex(ctx(), m_ast, p); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)
Interface to simplifier.

◆ stoi()

expr stoi ( ) const
inline

Definition at line 1562 of file z3++.h.

1562 {
1563 Z3_ast r = Z3_mk_str_to_int(ctx(), *this);
1564 check_error();
1565 return expr(ctx(), r);
1566 }
Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)
Convert string to integer.

◆ substitute() [1/3]

expr substitute ( expr_vector const dst)
inline

Apply substitution. Replace bound variables by expressions.

Definition at line 4399 of file z3++.h.

4399 {
4400 array<Z3_ast> _dst(dst.size());
4401 for (unsigned i = 0; i < dst.size(); ++i) {
4402 _dst[i] = dst[i];
4403 }
4404 Z3_ast r = Z3_substitute_vars(ctx(), m_ast, dst.size(), _dst.ptr());
4405 check_error();
4406 return expr(ctx(), r);
4407 }
Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
Substitute the variables in a with the expressions in to. For every i smaller than num_exprs,...

◆ substitute() [2/3]

expr substitute ( expr_vector const src,
expr_vector const dst 
)
inline

Apply substitution. Replace src expressions by dst.

Definition at line 4386 of file z3++.h.

4386 {
4387 assert(src.size() == dst.size());
4388 array<Z3_ast> _src(src.size());
4389 array<Z3_ast> _dst(dst.size());
4390 for (unsigned i = 0; i < src.size(); ++i) {
4391 _src[i] = src[i];
4392 _dst[i] = dst[i];
4393 }
4394 Z3_ast r = Z3_substitute(ctx(), m_ast, src.size(), _src.ptr(), _dst.ptr());
4395 check_error();
4396 return expr(ctx(), r);
4397 }
Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....

◆ substitute() [3/3]

expr substitute ( func_decl_vector const funs,
expr_vector const bodies 
)
inline

Apply function substitution by macro definitions.

Definition at line 4409 of file z3++.h.

4409 {
4410 array<Z3_ast> _dst(dst.size());
4411 array<Z3_func_decl> _funs(funs.size());
4412 if (dst.size() != funs.size()) {
4413 Z3_THROW(exception("length of argument lists don't align"));
4414 return expr(ctx(), nullptr);
4415 }
4416 for (unsigned i = 0; i < dst.size(); ++i) {
4417 _dst[i] = dst[i];
4418 _funs[i] = funs[i];
4419 }
4420 Z3_ast r = Z3_substitute_funs(ctx(), m_ast, dst.size(), _funs.ptr(), _dst.ptr());
4421 check_error();
4422 return expr(ctx(), r);
4423 }
Z3_ast Z3_API Z3_substitute_funs(Z3_context c, Z3_ast a, unsigned num_funs, Z3_func_decl const from[], Z3_ast const to[])
Substitute functions in from with new expressions in to.

◆ ubvtos()

expr ubvtos ( ) const
inline

Definition at line 1572 of file z3++.h.

1572 {
1573 Z3_ast r = Z3_mk_ubv_to_str(ctx(), *this);
1574 check_error();
1575 return expr(ctx(), r);
1576 }
Z3_ast Z3_API Z3_mk_ubv_to_str(Z3_context c, Z3_ast s)
Unsigned bit-vector to string conversion.

◆ unit()

expr unit ( ) const
inline

Definition at line 1534 of file z3++.h.

1534 {
1535 Z3_ast r = Z3_mk_seq_unit(ctx(), *this);
1536 check_error();
1537 return expr(ctx(), r);
1538 }
Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)
Create a unit sequence of a.

◆ update()

expr update ( expr_vector const args) const
inline

Update the arguments of this application. Return a new expression with the same function declaration and updated arguments. The number of new arguments must match the current number of arguments.

Precondition
is_app()
args.size() == num_args()

Definition at line 4425 of file z3++.h.

4425 {
4426 array<Z3_ast> _args(args.size());
4427 for (unsigned i = 0; i < args.size(); ++i) {
4428 _args[i] = args[i];
4429 }
4430 Z3_ast r = Z3_update_term(ctx(), m_ast, args.size(), _args.ptr());
4431 check_error();
4432 return expr(ctx(), r);
4433 }
unsigned size() const
Definition z3++.h:645
expr_vector args() const
Return a vector of all the arguments of this application. This method assumes the expression is an ap...
Definition z3++.h:1262
Z3_ast Z3_API Z3_update_term(Z3_context c, Z3_ast a, unsigned num_args, Z3_ast const args[])
Update the arguments of term a using the arguments args. The number of arguments num_args should coin...

Friends And Related Symbol Documentation

◆ abs

expr abs ( expr const a)
friend

Definition at line 2052 of file z3++.h.

2052 {
2053 Z3_ast r;
2054 if (a.is_int()) {
2055 expr zero = a.ctx().int_val(0);
2056 expr ge = a >= zero;
2057 expr na = -a;
2058 r = Z3_mk_ite(a.ctx(), ge, a, na);
2059 }
2060 else if (a.is_real()) {
2061 expr zero = a.ctx().real_val(0);
2062 expr ge = a >= zero;
2063 expr na = -a;
2064 r = Z3_mk_ite(a.ctx(), ge, a, na);
2065 }
2066 else {
2067 r = Z3_mk_fpa_abs(a.ctx(), a);
2068 }
2069 a.check_error();
2070 return expr(a.ctx(), r);
2071 }
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.

◆ atleast

expr atleast ( expr_vector const es,
unsigned  bound 
)
friend

Definition at line 2508 of file z3++.h.

2508 {
2509 assert(es.size() > 0);
2510 context& ctx = es[0u].ctx();
2511 array<Z3_ast> _es(es);
2512 Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
2513 ctx.check_error();
2514 return expr(ctx, r);
2515 }
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ atmost

expr atmost ( expr_vector const es,
unsigned  bound 
)
friend

Definition at line 2500 of file z3++.h.

2500 {
2501 assert(es.size() > 0);
2502 context& ctx = es[0u].ctx();
2503 array<Z3_ast> _es(es);
2504 Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
2505 ctx.check_error();
2506 return expr(ctx, r);
2507 }
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ bv2int

expr bv2int ( expr const a,
bool  is_signed 
)
friend

bit-vector and integer conversions.

Definition at line 2298 of file z3++.h.

2298{ Z3_ast r = Z3_mk_bv2int(a.ctx(), a, is_signed); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

◆ bvadd_no_overflow

expr bvadd_no_overflow ( expr const a,
expr const b,
bool  is_signed 
)
friend

bit-vector overflow/underflow checks

Definition at line 2304 of file z3++.h.

2304 {
2305 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2306 }
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

◆ bvadd_no_underflow

expr bvadd_no_underflow ( expr const a,
expr const b 
)
friend

Definition at line 2307 of file z3++.h.

2307 {
2308 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2309 }
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

◆ bvmul_no_overflow

expr bvmul_no_overflow ( expr const a,
expr const b,
bool  is_signed 
)
friend

Definition at line 2322 of file z3++.h.

2322 {
2323 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2324 }
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

◆ bvmul_no_underflow

expr bvmul_no_underflow ( expr const a,
expr const b 
)
friend

Definition at line 2325 of file z3++.h.

2325 {
2326 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2327 }
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

◆ bvneg_no_overflow

expr bvneg_no_overflow ( expr const a)
friend

Definition at line 2319 of file z3++.h.

2319 {
2320 Z3_ast r = Z3_mk_bvneg_no_overflow(a.ctx(), a); a.check_error(); return expr(a.ctx(), r);
2321 }
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

◆ bvredand

expr bvredand ( expr const a)
friend

Definition at line 2046 of file z3++.h.

2046 {
2047 assert(a.is_bv());
2048 Z3_ast r = Z3_mk_bvredand(a.ctx(), a);
2049 a.check_error();
2050 return expr(a.ctx(), r);
2051 }
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.

◆ bvredor

expr bvredor ( expr const a)
friend

Definition at line 2040 of file z3++.h.

2040 {
2041 assert(a.is_bv());
2042 Z3_ast r = Z3_mk_bvredor(a.ctx(), a);
2043 a.check_error();
2044 return expr(a.ctx(), r);
2045 }
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.

◆ bvsdiv_no_overflow

expr bvsdiv_no_overflow ( expr const a,
expr const b 
)
friend

Definition at line 2316 of file z3++.h.

2316 {
2317 check_context(a, b); Z3_ast r = Z3_mk_bvsdiv_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2318 }
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

◆ bvsub_no_overflow

expr bvsub_no_overflow ( expr const a,
expr const b 
)
friend

Definition at line 2310 of file z3++.h.

2310 {
2311 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2312 }
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

◆ bvsub_no_underflow

expr bvsub_no_underflow ( expr const a,
expr const b,
bool  is_signed 
)
friend

Definition at line 2313 of file z3++.h.

2313 {
2314 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_underflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2315 }
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

◆ concat [1/2]

expr concat ( expr const a,
expr const b 
)
friend

Definition at line 2534 of file z3++.h.

2534 {
2535 check_context(a, b);
2536 Z3_ast r;
2537 if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
2538 Z3_ast _args[2] = { a, b };
2539 r = Z3_mk_seq_concat(a.ctx(), 2, _args);
2540 }
2541 else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
2542 Z3_ast _args[2] = { a, b };
2543 r = Z3_mk_re_concat(a.ctx(), 2, _args);
2544 }
2545 else {
2546 r = Z3_mk_concat(a.ctx(), a, b);
2547 }
2548 a.ctx().check_error();
2549 return expr(a.ctx(), r);
2550 }
bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s)
Check if s is a sequence sort.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s)
Check if s is a regular expression sort.

◆ concat [2/2]

expr concat ( expr_vector const args)
friend

Definition at line 2552 of file z3++.h.

2552 {
2553 Z3_ast r;
2554 assert(args.size() > 0);
2555 if (args.size() == 1) {
2556 return args[0u];
2557 }
2558 context& ctx = args[0u].ctx();
2559 array<Z3_ast> _args(args);
2560 if (Z3_is_seq_sort(ctx, args[0u].get_sort())) {
2561 r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
2562 }
2563 else if (Z3_is_re_sort(ctx, args[0u].get_sort())) {
2564 r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
2565 }
2566 else {
2567 r = _args[args.size()-1];
2568 for (unsigned i = args.size()-1; i > 0; ) {
2569 --i;
2570 r = Z3_mk_concat(ctx, _args[i], r);
2571 ctx.check_error();
2572 }
2573 }
2574 ctx.check_error();
2575 return expr(ctx, r);
2576 }

◆ distinct

expr distinct ( expr_vector const args)
friend

Definition at line 2525 of file z3++.h.

2525 {
2526 assert(args.size() > 0);
2527 context& ctx = args[0u].ctx();
2528 array<Z3_ast> _args(args);
2529 Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
2530 ctx.check_error();
2531 return expr(ctx, r);
2532 }
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).

◆ fma

expr fma ( expr const a,
expr const b,
expr const c,
expr const rm 
)
friend

FloatingPoint fused multiply-add.

Definition at line 2088 of file z3++.h.

2088 {
2089 check_context(a, b); check_context(a, c); check_context(a, rm);
2090 assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
2091 Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
2092 a.check_error();
2093 return expr(a.ctx(), r);
2094 }
Z3_ast Z3_API Z3_mk_fpa_fma(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Floating-point fused multiply-add.

◆ fp_eq

expr fp_eq ( expr const a,
expr const b 
)
friend

Definition at line 2079 of file z3++.h.

2079 {
2080 check_context(a, b);
2081 assert(a.is_fpa());
2082 Z3_ast r = Z3_mk_fpa_eq(a.ctx(), a, b);
2083 a.check_error();
2084 return expr(a.ctx(), r);
2085 }
Z3_ast Z3_API Z3_mk_fpa_eq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point equality.

◆ fpa_fp

expr fpa_fp ( expr const sgn,
expr const exp,
expr const sig 
)
friend

Create an expression of FloatingPoint sort from three bit-vector expressions.

Definition at line 2096 of file z3++.h.

2096 {
2097 check_context(sgn, exp); check_context(exp, sig);
2098 assert(sgn.is_bv() && exp.is_bv() && sig.is_bv());
2099 Z3_ast r = Z3_mk_fpa_fp(sgn.ctx(), sgn, exp, sig);
2100 sgn.check_error();
2101 return expr(sgn.ctx(), r);
2102 }
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.

◆ fpa_to_fpa

expr fpa_to_fpa ( expr const t,
sort  s 
)
friend

Conversion of a floating-point term into another floating-point.

Definition at line 2132 of file z3++.h.

2132 {
2133 assert(t.is_fpa());
2134 Z3_ast r = Z3_mk_fpa_to_fp_float(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2135 t.check_error();
2136 return expr(t.ctx(), r);
2137 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

◆ fpa_to_sbv

expr fpa_to_sbv ( expr const t,
unsigned  sz 
)
friend

Conversion of a floating-point term into a signed bit-vector.

Definition at line 2104 of file z3++.h.

2104 {
2105 assert(t.is_fpa());
2106 Z3_ast r = Z3_mk_fpa_to_sbv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
2107 t.check_error();
2108 return expr(t.ctx(), r);
2109 }
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.

◆ fpa_to_ubv

expr fpa_to_ubv ( expr const t,
unsigned  sz 
)
friend

Conversion of a floating-point term into an unsigned bit-vector.

Definition at line 2111 of file z3++.h.

2111 {
2112 assert(t.is_fpa());
2113 Z3_ast r = Z3_mk_fpa_to_ubv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
2114 t.check_error();
2115 return expr(t.ctx(), r);
2116 }
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.

◆ implies [1/3]

expr implies ( bool  a,
expr const b 
)
friend

Definition at line 1691 of file z3++.h.

1691{ return implies(b.ctx().bool_val(a), b); }
friend expr implies(expr const &a, expr const &b)
Definition z3++.h:1686

◆ implies [2/3]

expr implies ( expr const a,
bool  b 
)
friend

Definition at line 1690 of file z3++.h.

1690{ return implies(a, a.ctx().bool_val(b)); }

◆ implies [3/3]

expr implies ( expr const a,
expr const b 
)
friend

Definition at line 1686 of file z3++.h.

1686 {
1687 assert(a.is_bool() && b.is_bool());
1689 }
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
#define _Z3_MK_BIN_(a, b, binop)
Definition z3++.h:1679

◆ int2bv

expr int2bv ( unsigned  n,
expr const a 
)
friend

Definition at line 2299 of file z3++.h.

2299{ Z3_ast r = Z3_mk_int2bv(a.ctx(), n, a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.

◆ is_int

expr is_int ( expr const e)
friend

Definition at line 1734 of file z3++.h.

1734{ _Z3_MK_UN_(e, Z3_mk_is_int); }
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
#define _Z3_MK_UN_(a, mkun)
Definition z3++.h:1726

Referenced by IntNumRef::as_long(), and ArithSortRef::subsort().

◆ ite

expr ite ( expr const c,
expr const t,
expr const e 
)
friend

Create the if-then-else expression ite(c, t, e)

Precondition
c.is_bool()

Definition at line 2151 of file z3++.h.

2151 {
2152 check_context(c, t); check_context(c, e);
2153 assert(c.is_bool());
2154 Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
2155 c.check_error();
2156 return expr(c.ctx(), r);
2157 }

◆ max

expr max ( expr const a,
expr const b 
)
friend

Definition at line 2024 of file z3++.h.

2024 {
2025 check_context(a, b);
2026 Z3_ast r;
2027 if (a.is_arith()) {
2028 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
2029 }
2030 else if (a.is_bv()) {
2031 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
2032 }
2033 else {
2034 assert(a.is_fpa());
2035 r = Z3_mk_fpa_max(a.ctx(), a, b);
2036 }
2037 a.check_error();
2038 return expr(a.ctx(), r);
2039 }
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_max(Z3_context c, Z3_ast t1, Z3_ast t2)
Maximum of floating-point numbers.
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.

◆ min

expr min ( expr const a,
expr const b 
)
friend

Definition at line 2008 of file z3++.h.

2008 {
2009 check_context(a, b);
2010 Z3_ast r;
2011 if (a.is_arith()) {
2012 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
2013 }
2014 else if (a.is_bv()) {
2015 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
2016 }
2017 else {
2018 assert(a.is_fpa());
2019 r = Z3_mk_fpa_min(a.ctx(), a, b);
2020 }
2021 a.check_error();
2022 return expr(a.ctx(), r);
2023 }
Z3_ast Z3_API Z3_mk_fpa_min(Z3_context c, Z3_ast t1, Z3_ast t2)
Minimum of floating-point numbers.

◆ mk_and

expr mk_and ( expr_vector const args)
friend

Definition at line 2612 of file z3++.h.

2612 {
2613 array<Z3_ast> _args(args);
2614 Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
2615 args.check_error();
2616 return expr(args.ctx(), r);
2617 }
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].

◆ mk_or

expr mk_or ( expr_vector const args)
friend

Definition at line 2606 of file z3++.h.

2606 {
2607 array<Z3_ast> _args(args);
2608 Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
2609 args.check_error();
2610 return expr(args.ctx(), r);
2611 }
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].

◆ mk_xor

expr mk_xor ( expr_vector const args)
friend

Definition at line 2618 of file z3++.h.

2618 {
2619 if (args.empty())
2620 return args.ctx().bool_val(false);
2621 expr r = args[0u];
2622 for (unsigned i = 1; i < args.size(); ++i)
2623 r = r ^ args[i];
2624 return r;
2625 }
bool empty() const
Definition z3++.h:651
expr bool_val(bool b)
Definition z3++.h:3935

◆ mod [1/3]

expr mod ( expr const a,
expr const b 
)
friend

Definition at line 1698 of file z3++.h.

1698 {
1699 if (a.is_bv()) {
1700 _Z3_MK_BIN_(a, b, Z3_mk_bvsmod);
1701 }
1702 else {
1703 _Z3_MK_BIN_(a, b, Z3_mk_mod);
1704 }
1705 }
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

◆ mod [2/3]

expr mod ( expr const a,
int  b 
)
friend

Definition at line 1706 of file z3++.h.

1706{ return mod(a, a.ctx().num_val(b, a.get_sort())); }
friend expr mod(expr const &a, expr const &b)
Definition z3++.h:1698

◆ mod [3/3]

expr mod ( int  a,
expr const b 
)
friend

Definition at line 1707 of file z3++.h.

1707{ return mod(b.ctx().num_val(a, b.get_sort()), b); }

◆ nand

expr nand ( expr const a,
expr const b 
)
friend

Definition at line 2005 of file z3++.h.

2005{ if (a.is_bool()) return !(a && b); check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nand.

◆ nor

expr nor ( expr const a,
expr const b 
)
friend

Definition at line 2006 of file z3++.h.

2006{ if (a.is_bool()) return !(a || b); check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nor.

◆ operator!

expr operator! ( expr const a)
friend

Return an expression representing not(a).

Precondition
a.is_bool()

Definition at line 1732 of file z3++.h.

1732{ assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

◆ operator!= [1/3]

expr operator!= ( expr const a,
expr const b 
)
friend

Definition at line 1774 of file z3++.h.

1774 {
1775 check_context(a, b);
1776 Z3_ast args[2] = { a, b };
1777 Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
1778 a.check_error();
1779 return expr(a.ctx(), r);
1780 }

◆ operator!= [2/3]

expr operator!= ( expr const a,
int  b 
)
friend

Definition at line 1781 of file z3++.h.

1781{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }

◆ operator!= [3/3]

expr operator!= ( int  a,
expr const b 
)
friend

Definition at line 1782 of file z3++.h.

1782{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }

◆ operator& [1/3]

expr operator& ( expr const a,
expr const b 
)
friend

Definition at line 1993 of file z3++.h.

1993{ if (a.is_bool()) return a && b; check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ operator& [2/3]

expr operator& ( expr const a,
int  b 
)
friend

Definition at line 1994 of file z3++.h.

1994{ return a & a.ctx().num_val(b, a.get_sort()); }

◆ operator& [3/3]

expr operator& ( int  a,
expr const b 
)
friend

Definition at line 1995 of file z3++.h.

1995{ return b.ctx().num_val(a, b.get_sort()) & b; }

◆ operator&& [1/3]

expr operator&& ( bool  a,
expr const b 
)
friend

Return an expression representing a and b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.

Precondition
b.is_bool()

Definition at line 1748 of file z3++.h.

1748{ return b.ctx().bool_val(a) && b; }

◆ operator&& [2/3]

expr operator&& ( expr const a,
bool  b 
)
friend

Return an expression representing a and b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.

Precondition
a.is_bool()

Definition at line 1747 of file z3++.h.

1747{ return a && a.ctx().bool_val(b); }

◆ operator&& [3/3]

expr operator&& ( expr const a,
expr const b 
)
friend

Return an expression representing a and b.

Precondition
a.is_bool()
b.is_bool()

Definition at line 1738 of file z3++.h.

1738 {
1739 check_context(a, b);
1740 assert(a.is_bool() && b.is_bool());
1741 Z3_ast args[2] = { a, b };
1742 Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
1743 a.check_error();
1744 return expr(a.ctx(), r);
1745 }

◆ operator* [1/3]

expr operator* ( expr const a,
expr const b 
)
friend

Definition at line 1816 of file z3++.h.

1816 {
1817 check_context(a, b);
1818 Z3_ast r = 0;
1819 if (a.is_arith() && b.is_arith()) {
1820 Z3_ast args[2] = { a, b };
1821 r = Z3_mk_mul(a.ctx(), 2, args);
1822 }
1823 else if (a.is_bv() && b.is_bv()) {
1824 r = Z3_mk_bvmul(a.ctx(), a, b);
1825 }
1826 else if (a.is_fpa() && b.is_fpa()) {
1827 r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1828 }
1829 else {
1830 // operator is not supported by given arguments.
1831 assert(false);
1832 }
1833 a.check_error();
1834 return expr(a.ctx(), r);
1835 }
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_ast Z3_API Z3_mk_fpa_mul(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point multiplication.

◆ operator* [2/3]

expr operator* ( expr const a,
int  b 
)
friend

Definition at line 1836 of file z3++.h.

1836{ return a * a.ctx().num_val(b, a.get_sort()); }

◆ operator* [3/3]

expr operator* ( int  a,
expr const b 
)
friend

Definition at line 1837 of file z3++.h.

1837{ return b.ctx().num_val(a, b.get_sort()) * b; }

◆ operator+ [1/3]

expr operator+ ( expr const a,
expr const b 
)
friend

Definition at line 1786 of file z3++.h.

1786 {
1787 check_context(a, b);
1788 Z3_ast r = 0;
1789 if (a.is_arith() && b.is_arith()) {
1790 Z3_ast args[2] = { a, b };
1791 r = Z3_mk_add(a.ctx(), 2, args);
1792 }
1793 else if (a.is_bv() && b.is_bv()) {
1794 r = Z3_mk_bvadd(a.ctx(), a, b);
1795 }
1796 else if (a.is_seq() && b.is_seq()) {
1797 return concat(a, b);
1798 }
1799 else if (a.is_re() && b.is_re()) {
1800 Z3_ast _args[2] = { a, b };
1801 r = Z3_mk_re_union(a.ctx(), 2, _args);
1802 }
1803 else if (a.is_fpa() && b.is_fpa()) {
1804 r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1805 }
1806 else {
1807 // operator is not supported by given arguments.
1808 assert(false);
1809 }
1810 a.check_error();
1811 return expr(a.ctx(), r);
1812 }
friend expr concat(expr const &a, expr const &b)
Definition z3++.h:2534
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
Z3_ast Z3_API Z3_mk_fpa_add(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point addition.
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].

◆ operator+ [2/3]

expr operator+ ( expr const a,
int  b 
)
friend

Definition at line 1813 of file z3++.h.

1813{ return a + a.ctx().num_val(b, a.get_sort()); }

◆ operator+ [3/3]

expr operator+ ( int  a,
expr const b 
)
friend

Definition at line 1814 of file z3++.h.

1814{ return b.ctx().num_val(a, b.get_sort()) + b; }

◆ operator- [1/4]

expr operator- ( expr const a)
friend

Definition at line 1882 of file z3++.h.

1882 {
1883 Z3_ast r = 0;
1884 if (a.is_arith()) {
1885 r = Z3_mk_unary_minus(a.ctx(), a);
1886 }
1887 else if (a.is_bv()) {
1888 r = Z3_mk_bvneg(a.ctx(), a);
1889 }
1890 else if (a.is_fpa()) {
1891 r = Z3_mk_fpa_neg(a.ctx(), a);
1892 }
1893 else {
1894 // operator is not supported by given arguments.
1895 assert(false);
1896 }
1897 a.check_error();
1898 return expr(a.ctx(), r);
1899 }
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.

◆ operator- [2/4]

expr operator- ( expr const a,
expr const b 
)
friend

Definition at line 1901 of file z3++.h.

1901 {
1902 check_context(a, b);
1903 Z3_ast r = 0;
1904 if (a.is_arith() && b.is_arith()) {
1905 Z3_ast args[2] = { a, b };
1906 r = Z3_mk_sub(a.ctx(), 2, args);
1907 }
1908 else if (a.is_bv() && b.is_bv()) {
1909 r = Z3_mk_bvsub(a.ctx(), a, b);
1910 }
1911 else if (a.is_fpa() && b.is_fpa()) {
1912 r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1913 }
1914 else {
1915 // operator is not supported by given arguments.
1916 assert(false);
1917 }
1918 a.check_error();
1919 return expr(a.ctx(), r);
1920 }
Z3_ast Z3_API Z3_mk_fpa_sub(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point subtraction.
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] - ... - args[num_args - 1].

◆ operator- [3/4]

expr operator- ( expr const a,
int  b 
)
friend

Definition at line 1921 of file z3++.h.

1921{ return a - a.ctx().num_val(b, a.get_sort()); }

◆ operator- [4/4]

expr operator- ( int  a,
expr const b 
)
friend

Definition at line 1922 of file z3++.h.

1922{ return b.ctx().num_val(a, b.get_sort()) - b; }

◆ operator/ [1/3]

expr operator/ ( expr const a,
expr const b 
)
friend

Definition at line 1860 of file z3++.h.

1860 {
1861 check_context(a, b);
1862 Z3_ast r = 0;
1863 if (a.is_arith() && b.is_arith()) {
1864 r = Z3_mk_div(a.ctx(), a, b);
1865 }
1866 else if (a.is_bv() && b.is_bv()) {
1867 r = Z3_mk_bvsdiv(a.ctx(), a, b);
1868 }
1869 else if (a.is_fpa() && b.is_fpa()) {
1870 r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1871 }
1872 else {
1873 // operator is not supported by given arguments.
1874 assert(false);
1875 }
1876 a.check_error();
1877 return expr(a.ctx(), r);
1878 }
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_fpa_div(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point division.

◆ operator/ [2/3]

expr operator/ ( expr const a,
int  b 
)
friend

Definition at line 1879 of file z3++.h.

1879{ return a / a.ctx().num_val(b, a.get_sort()); }

◆ operator/ [3/3]

expr operator/ ( int  a,
expr const b 
)
friend

Definition at line 1880 of file z3++.h.

1880{ return b.ctx().num_val(a, b.get_sort()) / b; }

◆ operator< [1/3]

expr operator< ( expr const a,
expr const b 
)
friend

Definition at line 1949 of file z3++.h.

1949 {
1950 check_context(a, b);
1951 Z3_ast r = 0;
1952 if (a.is_arith() && b.is_arith()) {
1953 r = Z3_mk_lt(a.ctx(), a, b);
1954 }
1955 else if (a.is_bv() && b.is_bv()) {
1956 r = Z3_mk_bvslt(a.ctx(), a, b);
1957 }
1958 else if (a.is_fpa() && b.is_fpa()) {
1959 r = Z3_mk_fpa_lt(a.ctx(), a, b);
1960 }
1961 else {
1962 // operator is not supported by given arguments.
1963 assert(false);
1964 }
1965 a.check_error();
1966 return expr(a.ctx(), r);
1967 }
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_mk_fpa_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than.

◆ operator< [2/3]

expr operator< ( expr const a,
int  b 
)
friend

Definition at line 1968 of file z3++.h.

1968{ return a < a.ctx().num_val(b, a.get_sort()); }

◆ operator< [3/3]

expr operator< ( int  a,
expr const b 
)
friend

Definition at line 1969 of file z3++.h.

1969{ return b.ctx().num_val(a, b.get_sort()) < b; }

◆ operator<= [1/3]

expr operator<= ( expr const a,
expr const b 
)
friend

Definition at line 1924 of file z3++.h.

1924 {
1925 check_context(a, b);
1926 Z3_ast r = 0;
1927 if (a.is_arith() && b.is_arith()) {
1928 r = Z3_mk_le(a.ctx(), a, b);
1929 }
1930 else if (a.is_bv() && b.is_bv()) {
1931 r = Z3_mk_bvsle(a.ctx(), a, b);
1932 }
1933 else if (a.is_fpa() && b.is_fpa()) {
1934 r = Z3_mk_fpa_leq(a.ctx(), a, b);
1935 }
1936 else {
1937 // operator is not supported by given arguments.
1938 assert(false);
1939 }
1940 a.check_error();
1941 return expr(a.ctx(), r);
1942 }
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
Z3_ast Z3_API Z3_mk_fpa_leq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than or equal.

◆ operator<= [2/3]

expr operator<= ( expr const a,
int  b 
)
friend

Definition at line 1943 of file z3++.h.

1943{ return a <= a.ctx().num_val(b, a.get_sort()); }

◆ operator<= [3/3]

expr operator<= ( int  a,
expr const b 
)
friend

Definition at line 1944 of file z3++.h.

1944{ return b.ctx().num_val(a, b.get_sort()) <= b; }

◆ operator== [1/3]

expr operator== ( expr const a,
expr const b 
)
friend

Definition at line 1763 of file z3++.h.

1763 {
1764 check_context(a, b);
1765 Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
1766 a.check_error();
1767 return expr(a.ctx(), r);
1768 }
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.

◆ operator== [2/3]

expr operator== ( expr const a,
int  b 
)
friend

Definition at line 1769 of file z3++.h.

1769{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }

◆ operator== [3/3]

expr operator== ( int  a,
expr const b 
)
friend

Definition at line 1770 of file z3++.h.

1770{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }

◆ operator> [1/3]

expr operator> ( expr const a,
expr const b 
)
friend

Definition at line 1971 of file z3++.h.

1971 {
1972 check_context(a, b);
1973 Z3_ast r = 0;
1974 if (a.is_arith() && b.is_arith()) {
1975 r = Z3_mk_gt(a.ctx(), a, b);
1976 }
1977 else if (a.is_bv() && b.is_bv()) {
1978 r = Z3_mk_bvsgt(a.ctx(), a, b);
1979 }
1980 else if (a.is_fpa() && b.is_fpa()) {
1981 r = Z3_mk_fpa_gt(a.ctx(), a, b);
1982 }
1983 else {
1984 // operator is not supported by given arguments.
1985 assert(false);
1986 }
1987 a.check_error();
1988 return expr(a.ctx(), r);
1989 }
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_ast Z3_API Z3_mk_fpa_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than.
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.

◆ operator> [2/3]

expr operator> ( expr const a,
int  b 
)
friend

Definition at line 1990 of file z3++.h.

1990{ return a > a.ctx().num_val(b, a.get_sort()); }

◆ operator> [3/3]

expr operator> ( int  a,
expr const b 
)
friend

Definition at line 1991 of file z3++.h.

1991{ return b.ctx().num_val(a, b.get_sort()) > b; }

◆ operator>= [1/3]

expr operator>= ( expr const a,
expr const b 
)
friend

Definition at line 1840 of file z3++.h.

1840 {
1841 check_context(a, b);
1842 Z3_ast r = 0;
1843 if (a.is_arith() && b.is_arith()) {
1844 r = Z3_mk_ge(a.ctx(), a, b);
1845 }
1846 else if (a.is_bv() && b.is_bv()) {
1847 r = Z3_mk_bvsge(a.ctx(), a, b);
1848 }
1849 else if (a.is_fpa() && b.is_fpa()) {
1850 r = Z3_mk_fpa_geq(a.ctx(), a, b);
1851 }
1852 else {
1853 // operator is not supported by given arguments.
1854 assert(false);
1855 }
1856 a.check_error();
1857 return expr(a.ctx(), r);
1858 }
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_geq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than or equal.

◆ operator>= [2/3]

expr operator>= ( expr const a,
int  b 
)
friend

Definition at line 1946 of file z3++.h.

1946{ return a >= a.ctx().num_val(b, a.get_sort()); }

◆ operator>= [3/3]

expr operator>= ( int  a,
expr const b 
)
friend

Definition at line 1947 of file z3++.h.

1947{ return b.ctx().num_val(a, b.get_sort()) >= b; }

◆ operator^ [1/3]

expr operator^ ( expr const a,
expr const b 
)
friend

Definition at line 1997 of file z3++.h.

1997{ check_context(a, b); Z3_ast r = a.is_bool() ? Z3_mk_xor(a.ctx(), a, b) : Z3_mk_bvxor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.

◆ operator^ [2/3]

expr operator^ ( expr const a,
int  b 
)
friend

Definition at line 1998 of file z3++.h.

1998{ return a ^ a.ctx().num_val(b, a.get_sort()); }

◆ operator^ [3/3]

expr operator^ ( int  a,
expr const b 
)
friend

Definition at line 1999 of file z3++.h.

1999{ return b.ctx().num_val(a, b.get_sort()) ^ b; }

◆ operator| [1/3]

expr operator| ( expr const a,
expr const b 
)
friend

Definition at line 2001 of file z3++.h.

2001{ if (a.is_bool()) return a || b; check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ operator| [2/3]

expr operator| ( expr const a,
int  b 
)
friend

Definition at line 2002 of file z3++.h.

2002{ return a | a.ctx().num_val(b, a.get_sort()); }

◆ operator| [3/3]

expr operator| ( int  a,
expr const b 
)
friend

Definition at line 2003 of file z3++.h.

2003{ return b.ctx().num_val(a, b.get_sort()) | b; }

◆ operator|| [1/3]

expr operator|| ( bool  a,
expr const b 
)
friend

Return an expression representing a or b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.

Precondition
b.is_bool()

Definition at line 1761 of file z3++.h.

1761{ return b.ctx().bool_val(a) || b; }

◆ operator|| [2/3]

expr operator|| ( expr const a,
bool  b 
)
friend

Return an expression representing a or b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.

Precondition
a.is_bool()

Definition at line 1759 of file z3++.h.

1759{ return a || a.ctx().bool_val(b); }

◆ operator|| [3/3]

expr operator|| ( expr const a,
expr const b 
)
friend

Return an expression representing a or b.

Precondition
a.is_bool()
b.is_bool()

Definition at line 1750 of file z3++.h.

1750 {
1751 check_context(a, b);
1752 assert(a.is_bool() && b.is_bool());
1753 Z3_ast args[2] = { a, b };
1754 Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
1755 a.check_error();
1756 return expr(a.ctx(), r);
1757 }

◆ operator~

expr operator~ ( expr const a)
friend

Definition at line 2086 of file z3++.h.

2086{ Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ pbeq

expr pbeq ( expr_vector const es,
int const coeffs,
int  bound 
)
friend

Definition at line 2492 of file z3++.h.

2492 {
2493 assert(es.size() > 0);
2494 context& ctx = es[0u].ctx();
2495 array<Z3_ast> _es(es);
2496 Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
2497 ctx.check_error();
2498 return expr(ctx, r);
2499 }
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pbge

expr pbge ( expr_vector const es,
int const coeffs,
int  bound 
)
friend

Definition at line 2484 of file z3++.h.

2484 {
2485 assert(es.size() > 0);
2486 context& ctx = es[0u].ctx();
2487 array<Z3_ast> _es(es);
2488 Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
2489 ctx.check_error();
2490 return expr(ctx, r);
2491 }
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pble

expr pble ( expr_vector const es,
int const coeffs,
int  bound 
)
friend

Definition at line 2476 of file z3++.h.

2476 {
2477 assert(es.size() > 0);
2478 context& ctx = es[0u].ctx();
2479 array<Z3_ast> _es(es);
2480 Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
2481 ctx.check_error();
2482 return expr(ctx, r);
2483 }
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pw [1/3]

expr pw ( expr const a,
expr const b 
)
friend

Definition at line 1694 of file z3++.h.

1694{ _Z3_MK_BIN_(a, b, Z3_mk_power); }
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ pw [2/3]

expr pw ( expr const a,
int  b 
)
friend

Definition at line 1695 of file z3++.h.

1695{ return pw(a, a.ctx().num_val(b, a.get_sort())); }
friend expr pw(expr const &a, expr const &b)
Definition z3++.h:1694

◆ pw [3/3]

expr pw ( int  a,
expr const b 
)
friend

Definition at line 1696 of file z3++.h.

1696{ return pw(b.ctx().num_val(a, b.get_sort()), b); }

◆ range

expr range ( expr const lo,
expr const hi 
)
friend

Definition at line 4293 of file z3++.h.

4293 {
4295 Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
4296 lo.check_error();
4297 return expr(lo.ctx(), r);
4298 }
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.

◆ rem [1/3]

expr rem ( expr const a,
expr const b 
)
friend

Definition at line 1714 of file z3++.h.

1714 {
1715 if (a.is_fpa() && b.is_fpa()) {
1717 } else {
1718 _Z3_MK_BIN_(a, b, Z3_mk_rem);
1719 }
1720 }
Z3_ast Z3_API Z3_mk_fpa_rem(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point remainder.
Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 rem arg2.

◆ rem [2/3]

expr rem ( expr const a,
int  b 
)
friend

Definition at line 1721 of file z3++.h.

1721{ return rem(a, a.ctx().num_val(b, a.get_sort())); }
friend expr rem(expr const &a, expr const &b)
Definition z3++.h:1714

◆ rem [3/3]

expr rem ( int  a,
expr const b 
)
friend

Definition at line 1722 of file z3++.h.

1722{ return rem(b.ctx().num_val(a, b.get_sort()), b); }

◆ round_fpa_to_closest_integer

expr round_fpa_to_closest_integer ( expr const t)
friend

Round a floating-point term into its closest integer.

Definition at line 2139 of file z3++.h.

2139 {
2140 assert(t.is_fpa());
2141 Z3_ast r = Z3_mk_fpa_round_to_integral(t.ctx(), t.ctx().fpa_rounding_mode(), t);
2142 t.check_error();
2143 return expr(t.ctx(), r);
2144 }
Z3_ast Z3_API Z3_mk_fpa_round_to_integral(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point roundToIntegral. Rounds a floating-point number to the closest integer,...

◆ sbv_to_fpa

expr sbv_to_fpa ( expr const t,
sort  s 
)
friend

Conversion of a signed bit-vector term into a floating-point.

Definition at line 2118 of file z3++.h.

2118 {
2119 assert(t.is_bv());
2120 Z3_ast r = Z3_mk_fpa_to_fp_signed(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2121 t.check_error();
2122 return expr(t.ctx(), r);
2123 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

◆ sqrt

expr sqrt ( expr const a,
expr const rm 
)
friend

Definition at line 2072 of file z3++.h.

2072 {
2073 check_context(a, rm);
2074 assert(a.is_fpa());
2075 Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
2076 a.check_error();
2077 return expr(a.ctx(), r);
2078 }
Z3_ast Z3_API Z3_mk_fpa_sqrt(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point square root.

◆ sum

expr sum ( expr_vector const args)
friend

Definition at line 2516 of file z3++.h.

2516 {
2517 assert(args.size() > 0);
2518 context& ctx = args[0u].ctx();
2519 array<Z3_ast> _args(args);
2520 Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
2521 ctx.check_error();
2522 return expr(ctx, r);
2523 }

◆ ubv_to_fpa

expr ubv_to_fpa ( expr const t,
sort  s 
)
friend

Conversion of an unsigned bit-vector term into a floating-point.

Definition at line 2125 of file z3++.h.

2125 {
2126 assert(t.is_bv());
2127 Z3_ast r = Z3_mk_fpa_to_fp_unsigned(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2128 t.check_error();
2129 return expr(t.ctx(), r);
2130 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

◆ xnor

expr xnor ( expr const a,
expr const b 
)
friend

Definition at line 2007 of file z3++.h.

2007{ if (a.is_bool()) return !(a ^ b); check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise xnor.