Functions | |
| z3_debug () | |
| _is_int (v) | |
| enable_trace (msg) | |
| disable_trace (msg) | |
| get_version_string () | |
| get_version () | |
| get_full_version () | |
| _z3_assert (cond, msg) | |
| _z3_check_cint_overflow (n, name) | |
| open_log (fname) | |
| append_log (s) | |
| to_symbol (s, ctx=None) | |
| _symbol2py (ctx, s) | |
| _get_args (args) | |
| _get_args_ast_list (args) | |
| _to_param_value (val) | |
| z3_error_handler (c, e) | |
| Context | main_ctx () |
| Context | _get_ctx (ctx) |
| Context | get_ctx (ctx) |
| set_param (*args, **kws) | |
| None | reset_params () |
| set_option (*args, **kws) | |
| get_param (name) | |
| bool | is_ast (Any a) |
| bool | eq (AstRef a, AstRef b) |
| int | _ast_kind (Context ctx, Any a) |
| _ctx_from_ast_arg_list (args, default_ctx=None) | |
| _ctx_from_ast_args (*args) | |
| _to_func_decl_array (args) | |
| _to_ast_array (args) | |
| _to_ref_array (ref, args) | |
| _to_ast_ref (a, ctx) | |
| _sort_kind (ctx, s) | |
| Sorts. | |
| bool | is_sort (Any s) |
| _to_sort_ref (s, ctx) | |
| SortRef | _sort (Context ctx, Any a) |
| SortRef | DeclareSort (name, ctx=None) |
| DeclareTypeVar (name, ctx=None) | |
| is_func_decl (a) | |
| Function (name, *sig) | |
| FreshFunction (*sig) | |
| _to_func_decl_ref (a, ctx) | |
| RecFunction (name, *sig) | |
| RecAddDefinition (f, args, body) | |
| deserialize (st) | |
| _to_expr_ref (a, ctx) | |
| _coerce_expr_merge (s, a) | |
| _check_same_sort (a, b, ctx=None) | |
| _coerce_exprs (a, b, ctx=None) | |
| _reduce (func, sequence, initial) | |
| _coerce_expr_list (alist, ctx=None) | |
| is_expr (a) | |
| is_app (a) | |
| is_const (a) | |
| is_var (a) | |
| get_var_index (a) | |
| is_app_of (a, k) | |
| If (a, b, c, ctx=None) | |
| Distinct (*args) | |
| _mk_bin (f, a, b) | |
| Const (name, sort) | |
| Consts (names, sort) | |
| FreshConst (sort, prefix="c") | |
| ExprRef | Var (int idx, SortRef s) |
| ExprRef | RealVar (int idx, ctx=None) |
| RealVarVector (int n, ctx=None) | |
| bool | is_bool (Any a) |
| bool | is_true (Any a) |
| bool | is_false (Any a) |
| bool | is_and (Any a) |
| bool | is_or (Any a) |
| bool | is_implies (Any a) |
| bool | is_not (Any a) |
| bool | is_eq (Any a) |
| bool | is_distinct (Any a) |
| BoolSort (ctx=None) | |
| BoolVal (val, ctx=None) | |
| Bool (name, ctx=None) | |
| Bools (names, ctx=None) | |
| BoolVector (prefix, sz, ctx=None) | |
| FreshBool (prefix="b", ctx=None) | |
| Implies (a, b, ctx=None) | |
| Xor (a, b, ctx=None) | |
| Not (a, ctx=None) | |
| mk_not (a) | |
| _has_probe (args) | |
| And (*args) | |
| Or (*args) | |
| is_pattern (a) | |
| MultiPattern (*args) | |
| _to_pattern (arg) | |
| is_quantifier (a) | |
| _mk_quantifier (is_forall, vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) | |
| ForAll (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) | |
| Exists (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) | |
| Lambda (vs, body) | |
| bool | is_arith_sort (Any s) |
| is_arith (a) | |
| bool | is_int (a) |
| is_real (a) | |
| _is_numeral (ctx, a) | |
| _is_algebraic (ctx, a) | |
| is_int_value (a) | |
| is_rational_value (a) | |
| is_algebraic_value (a) | |
| bool | is_add (Any a) |
| bool | is_mul (Any a) |
| bool | is_sub (Any a) |
| bool | is_div (Any a) |
| bool | is_idiv (Any a) |
| bool | is_mod (Any a) |
| bool | is_le (Any a) |
| bool | is_lt (Any a) |
| bool | is_ge (Any a) |
| bool | is_gt (Any a) |
| bool | is_is_int (Any a) |
| bool | is_to_real (Any a) |
| bool | is_to_int (Any a) |
| _py2expr (a, ctx=None) | |
| IntSort (ctx=None) | |
| RealSort (ctx=None) | |
| _to_int_str (val) | |
| IntVal (val, ctx=None) | |
| RealVal (val, ctx=None) | |
| RatVal (a, b, ctx=None) | |
| Q (a, b, ctx=None) | |
| Int (name, ctx=None) | |
| Ints (names, ctx=None) | |
| IntVector (prefix, sz, ctx=None) | |
| FreshInt (prefix="x", ctx=None) | |
| Real (name, ctx=None) | |
| Reals (names, ctx=None) | |
| RealVector (prefix, sz, ctx=None) | |
| FreshReal (prefix="b", ctx=None) | |
| ToReal (a) | |
| ToInt (a) | |
| IsInt (a) | |
| Sqrt (a, ctx=None) | |
| Cbrt (a, ctx=None) | |
| is_bv_sort (s) | |
| is_bv (a) | |
| is_bv_value (a) | |
| BV2Int (a, is_signed=False) | |
| Int2BV (a, num_bits) | |
| BitVecSort (sz, ctx=None) | |
| BitVecVal (val, bv, ctx=None) | |
| BitVec (name, bv, ctx=None) | |
| BitVecs (names, bv, ctx=None) | |
| Concat (*args) | |
| Extract (high, low, a) | |
| _check_bv_args (a, b) | |
| ULE (a, b) | |
| ULT (a, b) | |
| UGE (a, b) | |
| UGT (a, b) | |
| UDiv (a, b) | |
| URem (a, b) | |
| SRem (a, b) | |
| LShR (a, b) | |
| RotateLeft (a, b) | |
| RotateRight (a, b) | |
| SignExt (n, a) | |
| ZeroExt (n, a) | |
| RepeatBitVec (n, a) | |
| BVRedAnd (a) | |
| BVRedOr (a) | |
| BVAddNoOverflow (a, b, signed) | |
| BVAddNoUnderflow (a, b) | |
| BVSubNoOverflow (a, b) | |
| BVSubNoUnderflow (a, b, signed) | |
| BVSDivNoOverflow (a, b) | |
| BVSNegNoOverflow (a) | |
| BVMulNoOverflow (a, b, signed) | |
| BVMulNoUnderflow (a, b) | |
| _array_select (ar, arg) | |
| is_array_sort (a) | |
| bool | is_array (Any a) |
| is_const_array (a) | |
| is_K (a) | |
| is_map (a) | |
| is_default (a) | |
| get_map_func (a) | |
| ArraySort (*sig) | |
| Array (name, *sorts) | |
| Update (a, *args) | |
| Default (a) | |
| Store (a, *args) | |
| Select (a, *args) | |
| Map (f, *args) | |
| K (dom, v) | |
| Ext (a, b) | |
| is_select (a) | |
| is_store (a) | |
| SetSort (s) | |
| Sets. | |
| EmptySet (s) | |
| FullSet (s) | |
| SetUnion (*args) | |
| SetIntersect (*args) | |
| SetAdd (s, e) | |
| SetDel (s, e) | |
| SetComplement (s) | |
| SetDifference (a, b) | |
| IsMember (e, s) | |
| IsSubset (a, b) | |
| _valid_accessor (acc) | |
| Datatypes. | |
| CreateDatatypes (*ds) | |
| DatatypeSort (name, params=None, ctx=None) | |
| TupleSort (name, sorts, ctx=None) | |
| DisjointSum (name, sorts, ctx=None) | |
| EnumSort (name, values, ctx=None) | |
| args2params (arguments, keywords, ctx=None) | |
| Model (ctx=None, eval={}) | |
| is_as_array (n) | |
| get_as_array_func (n) | |
| SolverFor (logic, ctx=None, logFile=None) | |
| SimpleSolver (ctx=None, logFile=None) | |
| FiniteDomainSort (name, sz, ctx=None) | |
| is_finite_domain_sort (s) | |
| is_finite_domain (a) | |
| FiniteDomainVal (val, sort, ctx=None) | |
| is_finite_domain_value (a) | |
| _global_on_model (ctx) | |
| _to_goal (a) | |
| _to_tactic (t, ctx=None) | |
| _and_then (t1, t2, ctx=None) | |
| _or_else (t1, t2, ctx=None) | |
| AndThen (*ts, **ks) | |
| Then (*ts, **ks) | |
| OrElse (*ts, **ks) | |
| ParOr (*ts, **ks) | |
| ParThen (t1, t2, ctx=None) | |
| ParAndThen (t1, t2, ctx=None) | |
| With (t, *args, **keys) | |
| WithParams (t, p) | |
| Repeat (t, max=4294967295, ctx=None) | |
| TryFor (t, ms, ctx=None) | |
| tactics (ctx=None) | |
| tactic_description (name, ctx=None) | |
| describe_tactics () | |
| is_probe (p) | |
| _to_probe (p, ctx=None) | |
| probes (ctx=None) | |
| probe_description (name, ctx=None) | |
| describe_probes () | |
| _probe_nary (f, args, ctx) | |
| _probe_and (args, ctx) | |
| _probe_or (args, ctx) | |
| FailIf (p, ctx=None) | |
| When (p, t, ctx=None) | |
| Cond (p, t1, t2, ctx=None) | |
| simplify (a, *arguments, **keywords) | |
| Utils. | |
| help_simplify () | |
| simplify_param_descrs () | |
| substitute (t, *m) | |
| substitute_vars (t, *m) | |
| substitute_funs (t, *m) | |
| Sum (*args) | |
| Product (*args) | |
| Abs (arg) | |
| AtMost (*args) | |
| AtLeast (*args) | |
| _reorder_pb_arg (arg) | |
| _pb_args_coeffs (args, default_ctx=None) | |
| PbLe (args, k) | |
| PbGe (args, k) | |
| PbEq (args, k, ctx=None) | |
| solve (*args, **keywords) | |
| solve_using (s, *args, **keywords) | |
| prove (claim, show=False, **keywords) | |
| _solve_html (*args, **keywords) | |
| _solve_using_html (s, *args, **keywords) | |
| _prove_html (claim, show=False, **keywords) | |
| _dict2sarray (sorts, ctx) | |
| _dict2darray (decls, ctx) | |
| parse_smt2_string (s, sorts={}, decls={}, ctx=None) | |
| parse_smt2_file (f, sorts={}, decls={}, ctx=None) | |
| get_default_rounding_mode (ctx=None) | |
| set_default_rounding_mode (rm, ctx=None) | |
| get_default_fp_sort (ctx=None) | |
| set_default_fp_sort (ebits, sbits, ctx=None) | |
| _dflt_rm (ctx=None) | |
| _dflt_fps (ctx=None) | |
| _coerce_fp_expr_list (alist, ctx) | |
| Float16 (ctx=None) | |
| FloatHalf (ctx=None) | |
| Float32 (ctx=None) | |
| FloatSingle (ctx=None) | |
| Float64 (ctx=None) | |
| FloatDouble (ctx=None) | |
| Float128 (ctx=None) | |
| FloatQuadruple (ctx=None) | |
| is_fp_sort (s) | |
| is_fprm_sort (s) | |
| RoundNearestTiesToEven (ctx=None) | |
| RNE (ctx=None) | |
| RoundNearestTiesToAway (ctx=None) | |
| RNA (ctx=None) | |
| RoundTowardPositive (ctx=None) | |
| RTP (ctx=None) | |
| RoundTowardNegative (ctx=None) | |
| RTN (ctx=None) | |
| RoundTowardZero (ctx=None) | |
| RTZ (ctx=None) | |
| is_fprm (a) | |
| is_fprm_value (a) | |
| is_fp (a) | |
| is_fp_value (a) | |
| FPSort (ebits, sbits, ctx=None) | |
| _to_float_str (val, exp=0) | |
| fpNaN (s) | |
| fpPlusInfinity (s) | |
| fpMinusInfinity (s) | |
| fpInfinity (s, negative) | |
| fpPlusZero (s) | |
| fpMinusZero (s) | |
| fpZero (s, negative) | |
| FPVal (sig, exp=None, fps=None, ctx=None) | |
| FP (name, fpsort, ctx=None) | |
| FPs (names, fpsort, ctx=None) | |
| fpAbs (a, ctx=None) | |
| fpNeg (a, ctx=None) | |
| _mk_fp_unary (f, rm, a, ctx) | |
| _mk_fp_unary_pred (f, a, ctx) | |
| _mk_fp_bin (f, rm, a, b, ctx) | |
| _mk_fp_bin_norm (f, a, b, ctx) | |
| _mk_fp_bin_pred (f, a, b, ctx) | |
| _mk_fp_tern (f, rm, a, b, c, ctx) | |
| fpAdd (rm, a, b, ctx=None) | |
| fpSub (rm, a, b, ctx=None) | |
| fpMul (rm, a, b, ctx=None) | |
| fpDiv (rm, a, b, ctx=None) | |
| fpRem (a, b, ctx=None) | |
| fpMin (a, b, ctx=None) | |
| fpMax (a, b, ctx=None) | |
| fpFMA (rm, a, b, c, ctx=None) | |
| fpSqrt (rm, a, ctx=None) | |
| fpRoundToIntegral (rm, a, ctx=None) | |
| fpIsNaN (a, ctx=None) | |
| fpIsInf (a, ctx=None) | |
| fpIsZero (a, ctx=None) | |
| fpIsNormal (a, ctx=None) | |
| fpIsSubnormal (a, ctx=None) | |
| fpIsNegative (a, ctx=None) | |
| fpIsPositive (a, ctx=None) | |
| _check_fp_args (a, b) | |
| fpLT (a, b, ctx=None) | |
| fpLEQ (a, b, ctx=None) | |
| fpGT (a, b, ctx=None) | |
| fpGEQ (a, b, ctx=None) | |
| fpEQ (a, b, ctx=None) | |
| fpNEQ (a, b, ctx=None) | |
| fpFP (sgn, exp, sig, ctx=None) | |
| fpToFP (a1, a2=None, a3=None, ctx=None) | |
| fpBVToFP (v, sort, ctx=None) | |
| fpFPToFP (rm, v, sort, ctx=None) | |
| fpRealToFP (rm, v, sort, ctx=None) | |
| fpSignedToFP (rm, v, sort, ctx=None) | |
| fpUnsignedToFP (rm, v, sort, ctx=None) | |
| fpToFPUnsigned (rm, x, s, ctx=None) | |
| fpToSBV (rm, x, s, ctx=None) | |
| fpToUBV (rm, x, s, ctx=None) | |
| fpToReal (x, ctx=None) | |
| fpToIEEEBV (x, ctx=None) | |
| StringSort (ctx=None) | |
| CharSort (ctx=None) | |
| SeqSort (s) | |
| _coerce_char (ch, ctx=None) | |
| CharVal (ch, ctx=None) | |
| CharFromBv (bv) | |
| CharToBv (ch, ctx=None) | |
| CharToInt (ch, ctx=None) | |
| CharIsDigit (ch, ctx=None) | |
| _coerce_seq (s, ctx=None) | |
| _get_ctx2 (a, b, ctx=None) | |
| is_seq (a) | |
| bool | is_string (Any a) |
| bool | is_string_value (Any a) |
| StringVal (s, ctx=None) | |
| String (name, ctx=None) | |
| Strings (names, ctx=None) | |
| SubString (s, offset, length) | |
| SubSeq (s, offset, length) | |
| Empty (s) | |
| Full (s) | |
| Unit (a) | |
| PrefixOf (a, b) | |
| SuffixOf (a, b) | |
| Contains (a, b) | |
| Replace (s, src, dst) | |
| IndexOf (s, substr, offset=None) | |
| LastIndexOf (s, substr) | |
| Length (s) | |
| SeqMap (f, s) | |
| SeqMapI (f, i, s) | |
| SeqFoldLeft (f, a, s) | |
| SeqFoldLeftI (f, i, a, s) | |
| StrToInt (s) | |
| IntToStr (s) | |
| StrToCode (s) | |
| StrFromCode (c) | |
| Re (s, ctx=None) | |
| ReSort (s) | |
| is_re (s) | |
| InRe (s, re) | |
| Union (*args) | |
| Intersect (*args) | |
| Plus (re) | |
| Option (re) | |
| Complement (re) | |
| Star (re) | |
| Loop (re, lo, hi=0) | |
| Range (lo, hi, ctx=None) | |
| Diff (a, b, ctx=None) | |
| AllChar (regex_sort, ctx=None) | |
| PartialOrder (a, index) | |
| LinearOrder (a, index) | |
| TreeOrder (a, index) | |
| PiecewiseLinearOrder (a, index) | |
| TransitiveClosure (f) | |
| to_Ast (ptr) | |
| to_ContextObj (ptr) | |
| to_AstVectorObj (ptr) | |
| on_clause_eh (ctx, p, n, dep, clause) | |
| ensure_prop_closures () | |
| user_prop_push (ctx, cb) | |
| user_prop_pop (ctx, cb, num_scopes) | |
| user_prop_fresh (ctx, _new_ctx) | |
| user_prop_fixed (ctx, cb, id, value) | |
| user_prop_created (ctx, cb, id) | |
| user_prop_final (ctx, cb) | |
| user_prop_eq (ctx, cb, x, y) | |
| user_prop_diseq (ctx, cb, x, y) | |
| user_prop_decide (ctx, cb, t_ref, idx, phase) | |
| user_prop_binding (ctx, cb, q_ref, inst_ref) | |
| PropagateFunction (name, *sig) | |
Variables | |
| Z3_DEBUG = __debug__ | |
| _main_ctx = None | |
| sat = CheckSatResult(Z3_L_TRUE) | |
| unsat = CheckSatResult(Z3_L_FALSE) | |
| unknown = CheckSatResult(Z3_L_UNDEF) | |
| dict | _on_models = {} |
| _on_model_eh = on_model_eh_type(_global_on_model) | |
| _dflt_rounding_mode = Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN | |
| Floating-Point Arithmetic. | |
| int | _dflt_fpsort_ebits = 11 |
| int | _dflt_fpsort_sbits = 53 |
| _ROUNDING_MODES | |
| _my_hacky_class = None | |
| _on_clause_eh = Z3_on_clause_eh(on_clause_eh) | |
| _prop_closures = None | |
| _user_prop_push = Z3_push_eh(user_prop_push) | |
| _user_prop_pop = Z3_pop_eh(user_prop_pop) | |
| _user_prop_fresh = Z3_fresh_eh(user_prop_fresh) | |
| _user_prop_fixed = Z3_fixed_eh(user_prop_fixed) | |
| _user_prop_created = Z3_created_eh(user_prop_created) | |
| _user_prop_final = Z3_final_eh(user_prop_final) | |
| _user_prop_eq = Z3_eq_eh(user_prop_eq) | |
| _user_prop_diseq = Z3_eq_eh(user_prop_diseq) | |
| _user_prop_decide = Z3_decide_eh(user_prop_decide) | |
| _user_prop_binding = Z3_on_binding_eh(user_prop_binding) | |
|
protected |
Definition at line 8645 of file z3py.py.
|
protected |
Definition at line 4775 of file z3py.py.
Referenced by QuantifierRef.__getitem__(), and ArrayRef.__getitem__().
|
protected |
Definition at line 522 of file z3py.py.
Referenced by _to_ast_ref(), is_app(), and is_var().
|
protected |
Definition at line 4336 of file z3py.py.
Referenced by BVAddNoOverflow(), BVAddNoUnderflow(), BVMulNoOverflow(), BVMulNoUnderflow(), BVSDivNoOverflow(), BVSubNoOverflow(), BVSubNoUnderflow(), LShR(), RotateLeft(), RotateRight(), SRem(), UDiv(), UGE(), UGT(), ULE(), ULT(), and URem().
|
protected |
|
protected |
Definition at line 1289 of file z3py.py.
Referenced by _coerce_exprs().
|
protected |
|
protected |
Definition at line 1333 of file z3py.py.
Referenced by And(), Distinct(), and Or().
|
protected |
Definition at line 1271 of file z3py.py.
Referenced by _coerce_exprs().
|
protected |
Definition at line 1302 of file z3py.py.
Referenced by ArithRef.__add__(), BitVecRef.__add__(), BitVecRef.__and__(), ArithRef.__div__(), BitVecRef.__div__(), ExprRef.__eq__(), ArithRef.__ge__(), BitVecRef.__ge__(), ArithRef.__gt__(), BitVecRef.__gt__(), ArithRef.__le__(), BitVecRef.__le__(), BitVecRef.__lshift__(), ArithRef.__lt__(), BitVecRef.__lt__(), ArithRef.__mod__(), BitVecRef.__mod__(), ArithRef.__mul__(), BitVecRef.__mul__(), ExprRef.__ne__(), BitVecRef.__or__(), ArithRef.__pow__(), ArithRef.__radd__(), BitVecRef.__radd__(), BitVecRef.__rand__(), ArithRef.__rdiv__(), BitVecRef.__rdiv__(), BitVecRef.__rlshift__(), ArithRef.__rmod__(), BitVecRef.__rmod__(), ArithRef.__rmul__(), BitVecRef.__rmul__(), BitVecRef.__ror__(), ArithRef.__rpow__(), BitVecRef.__rrshift__(), BitVecRef.__rshift__(), ArithRef.__rsub__(), BitVecRef.__rsub__(), BitVecRef.__rxor__(), ArithRef.__sub__(), BitVecRef.__sub__(), BitVecRef.__xor__(), BVAddNoOverflow(), BVAddNoUnderflow(), BVMulNoOverflow(), BVMulNoUnderflow(), BVSDivNoOverflow(), BVSubNoOverflow(), BVSubNoUnderflow(), Extract(), If(), LShR(), RotateLeft(), RotateRight(), SRem(), UDiv(), UGE(), UGT(), ULE(), ULT(), and URem().
|
protected |
Definition at line 9706 of file z3py.py.
|
protected |
Definition at line 11250 of file z3py.py.
Referenced by Concat().
|
protected |
Definition at line 528 of file z3py.py.
Referenced by _ctx_from_ast_args(), And(), Distinct(), If(), Implies(), IsMember(), IsSubset(), Not(), Or(), SetAdd(), SetDel(), SetDifference(), SetIntersect(), SetUnion(), and Xor().
|
protected |
|
protected |
|
protected |
|
protected |
Definition at line 9571 of file z3py.py.
|
protected |
Definition at line 9555 of file z3py.py.
|
protected |
Definition at line 152 of file z3py.py.
Referenced by FuncDeclRef.__call__(), And(), ArraySort(), Goal.assert_exprs(), Solver.assert_exprs(), Solver.check(), Concat(), CreateDatatypes(), Distinct(), FreshFunction(), Function(), Map(), Or(), RecAddDefinition(), RecFunction(), Select(), SetIntersect(), SetUnion(), and Update().
|
protected |
|
protected |
Definition at line 287 of file z3py.py.
Referenced by And(), BitVec(), BitVecs(), BitVecSort(), BitVecVal(), Bool(), Bools(), BoolSort(), BoolVal(), Cbrt(), DatatypeSort(), DeclareSort(), DeclareTypeVar(), EnumSort(), FreshBool(), FreshConst(), FreshInt(), FreshReal(), get_ctx(), If(), Implies(), Int(), Ints(), IntSort(), IntVal(), IntVector(), Model(), Not(), Or(), Real(), Reals(), RealSort(), RealVal(), RealVector(), Sqrt(), to_symbol(), and Xor().
|
protected |
|
protected |
|
protected |
Return `True` if one of the elements of the given collection is a Z3 probe.
Definition at line 1974 of file z3py.py.
|
protected |
Definition at line 2871 of file z3py.py.
Referenced by _to_expr_ref(), and is_algebraic_value().
|
protected |
Definition at line 76 of file z3py.py.
Referenced by ParamDescrsRef.__getitem__(), ModelRef.__getitem__(), _py2expr(), Extract(), RatVal(), RepeatBitVec(), ParamsRef.set(), SignExt(), to_symbol(), and ZeroExt().
|
protected |
Definition at line 2867 of file z3py.py.
Referenced by _to_expr_ref(), is_bv_value(), is_int_value(), and is_rational_value().
|
protected |
Definition at line 1531 of file z3py.py.
Referenced by ArithRef.__add__(), ArithRef.__mul__(), ArithRef.__radd__(), ArithRef.__rmul__(), ArithRef.__rsub__(), and ArithRef.__sub__().
|
protected |
Definition at line 10545 of file z3py.py.
|
protected |
Definition at line 10554 of file z3py.py.
|
protected |
Definition at line 10562 of file z3py.py.
|
protected |
Definition at line 10570 of file z3py.py.
|
protected |
Definition at line 10528 of file z3py.py.
|
protected |
Definition at line 10537 of file z3py.py.
|
protected |
Definition at line 2330 of file z3py.py.
|
protected |
Definition at line 8653 of file z3py.py.
|
protected |
Definition at line 9344 of file z3py.py.
|
protected |
|
protected |
Definition at line 9058 of file z3py.py.
|
protected |
|
protected |
Version of function `prove` that renders HTML.
Definition at line 9535 of file z3py.py.
|
protected |
Definition at line 3272 of file z3py.py.
Referenced by _coerce_expr_list(), _coerce_exprs(), IsMember(), K(), SetAdd(), SetDel(), and ModelRef.update_value().
|
protected |
Definition at line 1326 of file z3py.py.
Referenced by _coerce_expr_list().
|
protected |
|
protected |
Version of function `solve` that renders HTML output.
Definition at line 9486 of file z3py.py.
|
protected |
Version of function `solve_using` that renders HTML.
Definition at line 9510 of file z3py.py.
|
protected |
Sorts.
Definition at line 586 of file z3py.py.
Referenced by _to_sort_ref().
|
protected |
Convert a Z3 symbol back into a Python object.
Definition at line 140 of file z3py.py.
Referenced by ParamDescrsRef.get_name(), SortRef.name(), QuantifierRef.qid(), QuantifierRef.skolem_id(), and QuantifierRef.var_name().
|
protected |
Definition at line 554 of file z3py.py.
Referenced by ExprRef.__ne__(), _array_select(), _mk_quantifier(), And(), Distinct(), Map(), MultiPattern(), Or(), SetIntersect(), SetUnion(), and Update().
|
protected |
Definition at line 570 of file z3py.py.
Referenced by AstRef.__deepcopy__(), AstVector.__getitem__(), AstMap.__getitem__(), and AstRef.translate().
|
protected |
Definition at line 1221 of file z3py.py.
Referenced by FuncDeclRef.__call__(), _array_select(), _to_ast_ref(), ExprRef.arg(), FuncEntry.arg_value(), QuantifierRef.body(), Const(), ArrayRef.default(), FuncInterp.else_value(), ModelRef.eval(), Ext(), FreshConst(), Goal.get(), ModelRef.get_interp(), If(), QuantifierRef.no_pattern(), ModelRef.project(), ModelRef.project_with_witness(), Update(), ExprRef.update(), DatatypeRef.update_field(), FuncEntry.value(), and Var().
|
protected |
Definition at line 10290 of file z3py.py.
|
protected |
|
protected |
Definition at line 962 of file z3py.py.
Referenced by _to_ast_ref().
|
protected |
|
protected |
Definition at line 3321 of file z3py.py.
Referenced by BitVecVal(), and IntVal().
|
protected |
Definition at line 178 of file z3py.py.
Referenced by Context.__init__(), and set_param().
|
protected |
Definition at line 2108 of file z3py.py.
Referenced by _mk_quantifier().
|
protected |
|
protected |
|
protected |
Definition at line 695 of file z3py.py.
Referenced by _sort(), _to_ast_ref(), FuncDeclRef.domain(), ArraySortRef.domain_n(), ModelRef.get_sort(), FuncDeclRef.range(), ArraySortRef.range(), and QuantifierRef.var_sort().
|
protected |
|
protected |
Datatypes.
Return `True` if acc is pair of the form (String, Datatype or Sort).
Definition at line 5207 of file z3py.py.
Referenced by Datatype.declare_core().
|
protected |
Definition at line 113 of file z3py.py.
Referenced by QuantifierRef.__getitem__(), ModelRef.__getitem__(), Context.__init__(), ParamDescrsRef.__init__(), Goal.__init__(), ArithRef.__mod__(), ArithRef.__rmod__(), _check_bv_args(), _coerce_expr_merge(), _ctx_from_ast_arg_list(), _mk_bin(), _mk_quantifier(), _py2expr(), _to_sort_ref(), _z3_check_cint_overflow(), DatatypeSortRef.accessor(), And(), ExprRef.arg(), args2params(), ArraySort(), IntNumRef.as_long(), RatNumRef.as_long(), Solver.assert_and_track(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), SortRef.cast(), Concat(), Const(), DatatypeSortRef.constructor(), Goal.convert_model(), CreateDatatypes(), ExprRef.decl(), Datatype.declare(), Datatype.declare_core(), Default(), Distinct(), EnumSort(), eq(), AstRef.eq(), Ext(), Extract(), FreshConst(), FreshFunction(), Function(), get_as_array_func(), ModelRef.get_interp(), get_map_func(), ModelRef.get_universe(), get_var_index(), If(), IsInt(), K(), ExprRef.kind(), Map(), MultiPattern(), QuantifierRef.no_pattern(), ExprRef.num_args(), Or(), QuantifierRef.pattern(), RatVal(), RecFunction(), DatatypeSortRef.recognizer(), RepeatBitVec(), Select(), ParamsRef.set(), set_param(), SignExt(), ToInt(), ToReal(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Update(), ExprRef.update(), DatatypeRef.update_field(), ParamsRef.validate(), Var(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and ZeroExt().
|
protected |
| Abs | ( | arg | ) |
| AllChar | ( | regex_sort, | |
ctx = None |
|||
| ) |
Create a regular expression that accepts all single character strings
Definition at line 11733 of file z3py.py.
| And | ( | * | args | ) |
Create a Z3 and-expression or and-probe.
>>> p, q, r = Bools('p q r')
>>> And(p, q, r)
And(p, q, r)
>>> P = BoolVector('p', 5)
>>> And(P)
And(p__0, p__1, p__2, p__3, p__4)
Definition at line 1982 of file z3py.py.
Referenced by BoolRef.__and__(), and Goal.as_expr().
| AndThen | ( | * | ts, |
| ** | ks | ||
| ) |
Return a tactic that applies the tactics in `*ts` in sequence.
>>> x, y = Ints('x y')
>>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
>>> t(And(x == 0, y > x + 1))
[[Not(y <= 1)]]
>>> t(And(x == 0, y > x + 1)).as_expr()
Not(y <= 1)
Definition at line 8661 of file z3py.py.
| append_log | ( | s | ) |
Append user-defined string to interaction log.
Definition at line 127 of file z3py.py.
| args2params | ( | arguments, | |
| keywords, | |||
ctx = None |
|||
| ) |
Convert python arguments into a Z3_params object.
A ':' is added to the keywords, and '_' is replaced with '-'
>>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
(params model true relevancy 2 elim_and true)
Definition at line 5682 of file z3py.py.
Referenced by Solver.set().
| Array | ( | name, | |
| * | sorts | ||
| ) |
Return an array constant named `name` with the given domain and range sorts.
>>> a = Array('a', IntSort(), IntSort())
>>> a.sort()
Array(Int, Int)
>>> a[0]
a[0]
Definition at line 4910 of file z3py.py.
| ArraySort | ( | * | sig | ) |
Return the Z3 array sort with the given domain and range sorts. >>> A = ArraySort(IntSort(), BoolSort()) >>> A Array(Int, Bool) >>> A.domain() Int >>> A.range() Bool >>> AA = ArraySort(IntSort(), A) >>> AA Array(Int, Array(Int, Bool))
Definition at line 4877 of file z3py.py.
Referenced by SortRef.__gt__(), Array(), and SetSort().
| AtLeast | ( | * | args | ) |
Create an at-least Pseudo-Boolean k constraint.
>>> a, b, c = Bools('a b c')
>>> f = AtLeast(a, b, c, 2)
Definition at line 9319 of file z3py.py.
| AtMost | ( | * | args | ) |
Create an at-most Pseudo-Boolean k constraint.
>>> a, b, c = Bools('a b c')
>>> f = AtMost(a, b, c, 2)
Definition at line 9301 of file z3py.py.
| BitVec | ( | name, | |
| bv, | |||
ctx = None |
|||
| ) |
Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
If `ctx=None`, then the global context is used.
>>> x = BitVec('x', 16)
>>> is_bv(x)
True
>>> x.size()
16
>>> x.sort()
BitVec(16)
>>> word = BitVecSort(16)
>>> x2 = BitVec('x', word)
>>> eq(x, x2)
True
Definition at line 4191 of file z3py.py.
Referenced by BitVecs().
| BitVecs | ( | names, | |
| bv, | |||
ctx = None |
|||
| ) |
Return a tuple of bit-vector constants of size bv.
>>> x, y, z = BitVecs('x y z', 16)
>>> x.size()
16
>>> x.sort()
BitVec(16)
>>> Sum(x, y, z)
0 + x + y + z
>>> Product(x, y, z)
1*x*y*z
>>> simplify(Product(x, y, z))
x*y*z
Definition at line 4215 of file z3py.py.
| BitVecSort | ( | sz, | |
ctx = None |
|||
| ) |
Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.
>>> Byte = BitVecSort(8)
>>> Word = BitVecSort(16)
>>> Byte
BitVec(8)
>>> x = Const('x', Byte)
>>> eq(x, BitVec('x', 8))
True
Definition at line 4159 of file z3py.py.
Referenced by BitVec(), and BitVecVal().
| BitVecVal | ( | val, | |
| bv, | |||
ctx = None |
|||
| ) |
Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.
>>> v = BitVecVal(10, 32)
>>> v
10
>>> print("0x%.8x" % v.as_long())
0x0000000a
Definition at line 4174 of file z3py.py.
| Bool | ( | name, | |
ctx = None |
|||
| ) |
Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.
>>> p = Bool('p')
>>> q = Bool('q')
>>> And(p, q)
And(p, q)
Definition at line 1861 of file z3py.py.
Referenced by Solver.assert_and_track(), Bools(), and BoolVector().
| Bools | ( | names, | |
ctx = None |
|||
| ) |
Return a tuple of Boolean constants.
`names` is a single string containing all names separated by blank spaces.
If `ctx=None`, then the global context is used.
>>> p, q, r = Bools('p q r')
>>> And(p, Or(q, r))
And(p, Or(q, r))
Definition at line 1873 of file z3py.py.
| BoolSort | ( | ctx = None | ) |
Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.
>>> BoolSort()
Bool
>>> p = Const('p', BoolSort())
>>> is_bool(p)
True
>>> r = Function('r', IntSort(), IntSort(), BoolSort())
>>> r(0, 1)
r(0, 1)
>>> is_bool(r(0, 1))
True
Definition at line 1824 of file z3py.py.
Referenced by Goal.assert_exprs(), Solver.assert_exprs(), Bool(), Solver.check(), FreshBool(), If(), Implies(), Not(), SetSort(), and Xor().
| BoolVal | ( | val, | |
ctx = None |
|||
| ) |
Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used. >>> BoolVal(True) True >>> is_true(BoolVal(True)) True >>> is_true(True) False >>> is_false(BoolVal(False)) True
Definition at line 1842 of file z3py.py.
Referenced by _mk_quantifier(), _py2expr(), and Goal.as_expr().
| BoolVector | ( | prefix, | |
| sz, | |||
ctx = None |
|||
| ) |
Return a list of Boolean constants of size `sz`.
The constants are named using the given prefix.
If `ctx=None`, then the global context is used.
>>> P = BoolVector('p', 3)
>>> P
[p__0, p__1, p__2]
>>> And(P)
And(p__0, p__1, p__2)
Definition at line 1889 of file z3py.py.
| BV2Int | ( | a, | |
is_signed = False |
|||
| ) |
Return the Z3 expression BV2Int(a).
>>> b = BitVec('b', 3)
>>> BV2Int(b).sort()
Int
>>> x = Int('x')
>>> x > BV2Int(b)
x > BV2Int(b)
>>> x > BV2Int(b, is_signed=False)
x > BV2Int(b)
>>> x > BV2Int(b, is_signed=True)
x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
>>> solve(x > BV2Int(b), b == 1, x < 3)
[x = 2, b = 1]
Definition at line 4127 of file z3py.py.
| BVAddNoOverflow | ( | a, | |
| b, | |||
| signed | |||
| ) |
A predicate the determines that bit-vector addition does not overflow
Definition at line 4636 of file z3py.py.
| BVAddNoUnderflow | ( | a, | |
| b | |||
| ) |
A predicate the determines that signed bit-vector addition does not underflow
Definition at line 4643 of file z3py.py.
| BVMulNoOverflow | ( | a, | |
| b, | |||
| signed | |||
| ) |
A predicate the determines that bit-vector multiplication does not overflow
Definition at line 4678 of file z3py.py.
| BVMulNoUnderflow | ( | a, | |
| b | |||
| ) |
A predicate the determines that bit-vector signed multiplication does not underflow
Definition at line 4685 of file z3py.py.
| BVRedAnd | ( | a | ) |
Return the reduction-and expression of `a`.
Definition at line 4622 of file z3py.py.
| BVRedOr | ( | a | ) |
Return the reduction-or expression of `a`.
Definition at line 4629 of file z3py.py.
| BVSDivNoOverflow | ( | a, | |
| b | |||
| ) |
A predicate the determines that bit-vector signed division does not overflow
Definition at line 4664 of file z3py.py.
| BVSNegNoOverflow | ( | a | ) |
A predicate the determines that bit-vector unary negation does not overflow
Definition at line 4671 of file z3py.py.
| BVSubNoOverflow | ( | a, | |
| b | |||
| ) |
A predicate the determines that bit-vector subtraction does not overflow
Definition at line 4650 of file z3py.py.
| BVSubNoUnderflow | ( | a, | |
| b, | |||
| signed | |||
| ) |
A predicate the determines that bit-vector subtraction does not underflow
Definition at line 4657 of file z3py.py.
| Cbrt | ( | a, | |
ctx = None |
|||
| ) |
Return a Z3 expression which represents the cubic root of a.
>>> x = Real('x')
>>> Cbrt(x)
x**(1/3)
Definition at line 3573 of file z3py.py.
| CharFromBv | ( | bv | ) |
| CharIsDigit | ( | ch, | |
ctx = None |
|||
| ) |
| CharSort | ( | ctx = None | ) |
| CharToBv | ( | ch, | |
ctx = None |
|||
| ) |
| CharToInt | ( | ch, | |
ctx = None |
|||
| ) |
| CharVal | ( | ch, | |
ctx = None |
|||
| ) |
| Complement | ( | re | ) |
| Concat | ( | * | args | ) |
Create a Z3 bit-vector concatenation expression.
>>> v = BitVecVal(1, 4)
>>> Concat(v, v+1, v)
Concat(Concat(1, 1 + 1), 1)
>>> simplify(Concat(v, v+1, v))
289
>>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
121
Definition at line 4236 of file z3py.py.
| Cond | ( | p, | |
| t1, | |||
| t2, | |||
ctx = None |
|||
| ) |
Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.
>>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
Definition at line 9118 of file z3py.py.
Referenced by If().
| Const | ( | name, | |
| sort | |||
| ) |
Create a constant of the given sort.
>>> Const('x', IntSort())
x
Definition at line 1540 of file z3py.py.
Referenced by Consts().
| Consts | ( | names, | |
| sort | |||
| ) |
Create several constants of the given sort.
`names` is a string containing the names of all constants to be created.
Blank spaces separate the names of different constants.
>>> x, y, z = Consts('x y z', IntSort())
>>> x + y + z
x + y + z
Definition at line 1552 of file z3py.py.
| Contains | ( | a, | |
| b | |||
| ) |
Check if 'a' contains 'b'
>>> s1 = Contains("abc", "ab")
>>> simplify(s1)
True
>>> s2 = Contains("abc", "bc")
>>> simplify(s2)
True
>>> x, y, z = Strings('x y z')
>>> s3 = Contains(Concat(x,y,z), y)
>>> simplify(s3)
True
Definition at line 11420 of file z3py.py.
| CreateDatatypes | ( | * | ds | ) |
Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.
In the following example we define a Tree-List using two mutually recursive datatypes.
>>> TreeList = Datatype('TreeList')
>>> Tree = Datatype('Tree')
>>> # Tree has two constructors: leaf and node
>>> Tree.declare('leaf', ('val', IntSort()))
>>> # a node contains a list of trees
>>> Tree.declare('node', ('children', TreeList))
>>> TreeList.declare('nil')
>>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
>>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
>>> Tree.val(Tree.leaf(10))
val(leaf(10))
>>> simplify(Tree.val(Tree.leaf(10)))
10
>>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
>>> n1
node(cons(leaf(10), cons(leaf(20), nil)))
>>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
>>> simplify(n2 == n1)
False
>>> simplify(TreeList.car(Tree.children(n2)) == n1)
True
Definition at line 5328 of file z3py.py.
Referenced by Datatype.create().
| DatatypeSort | ( | name, | |
params = None, |
|||
ctx = None |
|||
| ) |
Create a reference to a sort that was declared, or will be declared, as a recursive datatype.
Args:
name: name of the datatype sort
params: optional list/tuple of sort parameters for parametric datatypes
ctx: Z3 context (optional)
Example:
>>> # Non-parametric datatype
>>> TreeRef = DatatypeSort('Tree')
>>> # Parametric datatype with one parameter
>>> ListIntRef = DatatypeSort('List', [IntSort()])
>>> # Parametric datatype with multiple parameters
>>> PairRef = DatatypeSort('Pair', [IntSort(), BoolSort()])
Definition at line 5554 of file z3py.py.
| SortRef DeclareSort | ( | name, | |
ctx = None |
|||
| ) |
Create a new uninterpreted sort named `name`.
If `ctx=None`, then the new sort is declared in the global Z3Py context.
>>> A = DeclareSort('A')
>>> a = Const('a', A)
>>> b = Const('b', A)
>>> a.sort() == A
True
>>> b.sort() == A
True
>>> a == b
a == b
Definition at line 730 of file z3py.py.
| DeclareTypeVar | ( | name, | |
ctx = None |
|||
| ) |
Create a new type variable named `name`. If `ctx=None`, then the new sort is declared in the global Z3Py context.
Definition at line 758 of file z3py.py.
| Default | ( | a | ) |
Return a default value for array expression. >>> b = K(IntSort(), 1) >>> prove(Default(b) == 1) proved
Definition at line 4956 of file z3py.py.
| describe_probes | ( | ) |
Display a (tabular) description of all available probes in Z3.
Definition at line 9039 of file z3py.py.
| describe_tactics | ( | ) |
Display a (tabular) description of all available tactics in Z3.
Definition at line 8833 of file z3py.py.
| deserialize | ( | st | ) |
inverse function to the serialize method on ExprRef. It is made available to make it easier for users to serialize expressions back and forth between strings. Solvers can be serialized using the 'sexpr()' method.
Definition at line 1207 of file z3py.py.
| Diff | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the difference regular expression
Definition at line 11725 of file z3py.py.
| disable_trace | ( | msg | ) |
Definition at line 87 of file z3py.py.
| DisjointSum | ( | name, | |
| sorts, | |||
ctx = None |
|||
| ) |
Create a named tagged union sort base on a set of underlying sorts
Example:
>>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
Definition at line 5591 of file z3py.py.
| Distinct | ( | * | args | ) |
Create a Z3 distinct expression.
>>> x = Int('x')
>>> y = Int('y')
>>> Distinct(x, y)
x != y
>>> z = Int('z')
>>> Distinct(x, y, z)
Distinct(x, y, z)
>>> simplify(Distinct(x, y, z))
Distinct(x, y, z)
>>> simplify(Distinct(x, y, z), blast_distinct=True)
And(Not(x == y), Not(x == z), Not(y == z))
Definition at line 1507 of file z3py.py.
| Empty | ( | s | ) |
Create the empty sequence of the given sort
>>> e = Empty(StringSort())
>>> e2 = StringVal("")
>>> print(e.eq(e2))
True
>>> e3 = Empty(SeqSort(IntSort()))
>>> print(e3)
Empty(Seq(Int))
>>> e4 = Empty(ReSort(SeqSort(IntSort())))
>>> print(e4)
Empty(ReSort(Seq(Int)))
Definition at line 11350 of file z3py.py.
| EmptySet | ( | s | ) |
| enable_trace | ( | msg | ) |
Definition at line 83 of file z3py.py.
| ensure_prop_closures | ( | ) |
| EnumSort | ( | name, | |
| values, | |||
ctx = None |
|||
| ) |
Return a new enumeration sort named `name` containing the given values.
The result is a pair (sort, list of constants).
Example:
>>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
Definition at line 5603 of file z3py.py.
Return `True` if `a` and `b` are structurally identical AST nodes.
>>> x = Int('x')
>>> y = Int('y')
>>> eq(x, y)
False
>>> eq(x + 1, x + 1)
True
>>> eq(x + 1, 1 + x)
False
>>> eq(simplify(x + 1), simplify(1 + x))
True
Definition at line 503 of file z3py.py.
| Exists | ( | vs, | |
| body, | |||
weight = 1, |
|||
qid = "", |
|||
skid = "", |
|||
patterns = [], |
|||
no_patterns = [] |
|||
| ) |
Create a Z3 exists formula.
The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> x = Int('x')
>>> y = Int('y')
>>> q = Exists([x, y], f(x, y) >= x, skid="foo")
>>> q
Exists([x, y], f(x, y) >= x)
>>> is_quantifier(q)
True
>>> r = Tactic('nnf')(q).as_expr()
>>> is_quantifier(r)
False
Definition at line 2383 of file z3py.py.
| Ext | ( | a, | |
| b | |||
| ) |
Return extensionality index for one-dimensional arrays.
>> a, b = Consts('a b', SetSort(IntSort()))
>> Ext(a, b)
Ext(a, b)
Definition at line 5045 of file z3py.py.
| Extract | ( | high, | |
| low, | |||
| a | |||
| ) |
Create a Z3 bit-vector extraction expression or sequence extraction expression.
Extract is overloaded to work with both bit-vectors and sequences:
**Bit-vector extraction**: Extract(high, low, bitvector)
Extracts bits from position `high` down to position `low` (both inclusive).
- high: int - the highest bit position to extract (0-indexed from right)
- low: int - the lowest bit position to extract (0-indexed from right)
- bitvector: BitVecRef - the bit-vector to extract from
Returns a new bit-vector containing bits [high:low]
**Sequence extraction**: Extract(sequence, offset, length)
Extracts a subsequence starting at the given offset with the specified length.
The functions SubString and SubSeq are redirected to this form of Extract.
- sequence: SeqRef or str - the sequence to extract from
- offset: int - the starting position (0-indexed)
- length: int - the number of elements to extract
Returns a new sequence containing the extracted subsequence
>>> # Bit-vector extraction examples
>>> x = BitVec('x', 8)
>>> Extract(6, 2, x) # Extract bits 6 down to 2 (5 bits total)
Extract(6, 2, x)
>>> Extract(6, 2, x).sort() # Result is a 5-bit vector
BitVec(5)
>>> Extract(7, 0, x) # Extract all 8 bits
Extract(7, 0, x)
>>> Extract(3, 3, x) # Extract single bit at position 3
Extract(3, 3, x)
>>> # Sequence extraction examples
>>> s = StringVal("hello")
>>> Extract(s, 1, 3) # Extract 3 characters starting at position 1
str.substr("hello", 1, 3)
>>> simplify(Extract(StringVal("abcd"), 2, 1)) # Extract 1 character at position 2
"c"
>>> simplify(Extract(StringVal("abcd"), 0, 2)) # Extract first 2 characters
"ab"
Definition at line 4282 of file z3py.py.
| FailIf | ( | p, | |
ctx = None |
|||
| ) |
Return a tactic that fails if the probe `p` evaluates to true.
Otherwise, it returns the input goal unmodified.
In the following example, the tactic applies 'simplify' if and only if there are
more than 2 constraints in the goal.
>>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
>>> x, y = Ints('x y')
>>> g = Goal()
>>> g.add(x > 0)
>>> g.add(y > 0)
>>> t(g)
[[x > 0, y > 0]]
>>> g.add(x == y + 1)
>>> t(g)
[[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 9076 of file z3py.py.
| FiniteDomainSort | ( | name, | |
| sz, | |||
ctx = None |
|||
| ) |
Create a named finite domain sort of a given size sz
Definition at line 8005 of file z3py.py.
| FiniteDomainVal | ( | val, | |
| sort, | |||
ctx = None |
|||
| ) |
Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.
>>> s = FiniteDomainSort('S', 256)
>>> FiniteDomainVal(255, s)
255
>>> FiniteDomainVal('100', s)
100
Definition at line 8075 of file z3py.py.
| Float128 | ( | ctx = None | ) |
Floating-point 128-bit (quadruple) sort.
Definition at line 9804 of file z3py.py.
| Float16 | ( | ctx = None | ) |
| Float32 | ( | ctx = None | ) |
| Float64 | ( | ctx = None | ) |
| FloatDouble | ( | ctx = None | ) |
| FloatHalf | ( | ctx = None | ) |
| FloatQuadruple | ( | ctx = None | ) |
Floating-point 128-bit (quadruple) sort.
Definition at line 9810 of file z3py.py.
| FloatSingle | ( | ctx = None | ) |
| ForAll | ( | vs, | |
| body, | |||
weight = 1, |
|||
qid = "", |
|||
skid = "", |
|||
patterns = [], |
|||
no_patterns = [] |
|||
| ) |
Create a Z3 forall formula.
The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> x = Int('x')
>>> y = Int('y')
>>> ForAll([x, y], f(x, y) >= x)
ForAll([x, y], f(x, y) >= x)
>>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
ForAll([x, y], f(x, y) >= x)
>>> ForAll([x, y], f(x, y) >= x, weight=10)
ForAll([x, y], f(x, y) >= x)
Definition at line 2365 of file z3py.py.
| FP | ( | name, | |
| fpsort, | |||
ctx = None |
|||
| ) |
Return a floating-point constant named `name`.
`fpsort` is the floating-point sort.
If `ctx=None`, then the global context is used.
>>> x = FP('x', FPSort(8, 24))
>>> is_fp(x)
True
>>> x.ebits()
8
>>> x.sort()
FPSort(8, 24)
>>> word = FPSort(8, 24)
>>> x2 = FP('x', word)
>>> eq(x, x2)
True
Definition at line 10446 of file z3py.py.
| fpAbs | ( | a, | |
ctx = None |
|||
| ) |
Create a Z3 floating-point absolute value expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FPVal(1.0, s) >>> fpAbs(x) fpAbs(1) >>> y = FPVal(-20.0, s) >>> y -1.25*(2**4) >>> fpAbs(y) fpAbs(-1.25*(2**4)) >>> fpAbs(-1.25*(2**4)) fpAbs(-1.25*(2**4)) >>> fpAbs(x).sort() FPSort(8, 24)
Definition at line 10489 of file z3py.py.
| fpAdd | ( | rm, | |
| a, | |||
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point addition expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpAdd(rm, x, y)
x + y
>>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
fpAdd(RTZ(), x, y)
>>> fpAdd(rm, x, y).sort()
FPSort(8, 24)
Definition at line 10580 of file z3py.py.
| fpBVToFP | ( | v, | |
| sort, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression that represents the conversion from a bit-vector term to a floating-point term. >>> x_bv = BitVecVal(0x3F800000, 32) >>> x_fp = fpBVToFP(x_bv, Float32()) >>> x_fp fpToFP(1065353216) >>> simplify(x_fp) 1
Definition at line 10902 of file z3py.py.
| fpDiv | ( | rm, | |
| a, | |||
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point division expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpDiv(rm, x, y)
x / y
>>> fpDiv(rm, x, y).sort()
FPSort(8, 24)
Definition at line 10627 of file z3py.py.
| fpEQ | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point expression `fpEQ(other, self)`.
>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpEQ(x, y)
fpEQ(x, y)
>>> fpEQ(x, y).sexpr()
'(fp.eq x y)'
Definition at line 10810 of file z3py.py.
| fpFMA | ( | rm, | |
| a, | |||
| b, | |||
| c, | |||
ctx = None |
|||
| ) |
| fpFP | ( | sgn, | |
| exp, | |||
| sig, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp. >>> s = FPSort(8, 24) >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23)) >>> print(x) fpFP(1, 127, 4194304) >>> xv = FPVal(-1.5, s) >>> print(xv) -1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() sat >>> xv = FPVal(+1.5, s) >>> print(xv) 1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() unsat
Definition at line 10834 of file z3py.py.
| fpFPToFP | ( | rm, | |
| v, | |||
| sort, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression that represents the conversion from a floating-point term to a floating-point term of different precision. >>> x_sgl = FPVal(1.0, Float32()) >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64()) >>> x_dbl fpToFP(RNE(), 1) >>> simplify(x_dbl) 1 >>> x_dbl.sort() FPSort(11, 53)
Definition at line 10919 of file z3py.py.
| fpGEQ | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point expression `other >= self`.
>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpGEQ(x, y)
x >= y
>>> (x >= y).sexpr()
'(fp.geq x y)'
Definition at line 10798 of file z3py.py.
| fpGT | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point expression `other > self`.
>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpGT(x, y)
x > y
>>> (x > y).sexpr()
'(fp.gt x y)'
Definition at line 10786 of file z3py.py.
| fpInfinity | ( | s, | |
| negative | |||
| ) |
Create a Z3 floating-point +oo or -oo term.
Definition at line 10374 of file z3py.py.
| fpIsInf | ( | a, | |
ctx = None |
|||
| ) |
Create a Z3 floating-point isInfinite expression.
>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> fpIsInf(x)
fpIsInf(x)
Definition at line 10716 of file z3py.py.
| fpIsNaN | ( | a, | |
ctx = None |
|||
| ) |
Create a Z3 floating-point isNaN expression.
>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpIsNaN(x)
fpIsNaN(x)
Definition at line 10704 of file z3py.py.
| fpIsNegative | ( | a, | |
ctx = None |
|||
| ) |
| fpIsNormal | ( | a, | |
ctx = None |
|||
| ) |
| fpIsPositive | ( | a, | |
ctx = None |
|||
| ) |
| fpIsSubnormal | ( | a, | |
ctx = None |
|||
| ) |
| fpIsZero | ( | a, | |
ctx = None |
|||
| ) |
| fpLEQ | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point expression `other <= self`.
>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpLEQ(x, y)
x <= y
>>> (x <= y).sexpr()
'(fp.leq x y)'
Definition at line 10774 of file z3py.py.
| fpLT | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point expression `other < self`.
>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpLT(x, y)
x < y
>>> (x < y).sexpr()
'(fp.lt x y)'
Definition at line 10762 of file z3py.py.
| fpMax | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point maximum expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMax(x, y)
fpMax(x, y)
>>> fpMax(x, y).sort()
FPSort(8, 24)
Definition at line 10671 of file z3py.py.
| fpMin | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point minimum expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMin(x, y)
fpMin(x, y)
>>> fpMin(x, y).sort()
FPSort(8, 24)
Definition at line 10656 of file z3py.py.
| fpMinusInfinity | ( | s | ) |
| fpMinusZero | ( | s | ) |
Create a Z3 floating-point -0.0 term.
Definition at line 10387 of file z3py.py.
| fpMul | ( | rm, | |
| a, | |||
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point multiplication expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMul(rm, x, y)
x * y
>>> fpMul(rm, x, y).sort()
FPSort(8, 24)
Definition at line 10612 of file z3py.py.
| fpNaN | ( | s | ) |
Create a Z3 floating-point NaN term. >>> s = FPSort(8, 24) >>> set_fpa_pretty(True) >>> fpNaN(s) NaN >>> pb = get_fpa_pretty() >>> set_fpa_pretty(False) >>> fpNaN(s) fpNaN(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 10334 of file z3py.py.
| fpNeg | ( | a, | |
ctx = None |
|||
| ) |
Create a Z3 floating-point addition expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> fpNeg(x)
-x
>>> fpNeg(x).sort()
FPSort(8, 24)
Definition at line 10512 of file z3py.py.
| fpNEQ | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create the Z3 floating-point expression `Not(fpEQ(other, self))`.
>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpNEQ(x, y)
Not(fpEQ(x, y))
>>> (x != y).sexpr()
'(distinct x y)'
Definition at line 10822 of file z3py.py.
| fpPlusInfinity | ( | s | ) |
Create a Z3 floating-point +oo term. >>> s = FPSort(8, 24) >>> pb = get_fpa_pretty() >>> set_fpa_pretty(True) >>> fpPlusInfinity(s) +oo >>> set_fpa_pretty(False) >>> fpPlusInfinity(s) fpPlusInfinity(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 10351 of file z3py.py.
| fpPlusZero | ( | s | ) |
| fpRealToFP | ( | rm, | |
| v, | |||
| sort, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression that represents the conversion from a real term to a floating-point term. >>> x_r = RealVal(1.5) >>> x_fp = fpRealToFP(RNE(), x_r, Float32()) >>> x_fp fpToFP(RNE(), 3/2) >>> simplify(x_fp) 1.5
Definition at line 10939 of file z3py.py.
| fpRem | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point remainder expression.
>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpRem(x, y)
fpRem(x, y)
>>> fpRem(x, y).sort()
FPSort(8, 24)
Definition at line 10642 of file z3py.py.
| fpRoundToIntegral | ( | rm, | |
| a, | |||
ctx = None |
|||
| ) |
| FPs | ( | names, | |
| fpsort, | |||
ctx = None |
|||
| ) |
Return an array of floating-point constants.
>>> x, y, z = FPs('x y z', FPSort(8, 24))
>>> x.sort()
FPSort(8, 24)
>>> x.sbits()
24
>>> x.ebits()
8
>>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
(x + y) * z
Definition at line 10470 of file z3py.py.
| fpSignedToFP | ( | rm, | |
| v, | |||
| sort, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression that represents the conversion from a signed bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFP(RNE(), 4294967291) >>> simplify(x_fp) -1.25*(2**2)
Definition at line 10957 of file z3py.py.
| FPSort | ( | ebits, | |
| sbits, | |||
ctx = None |
|||
| ) |
Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.
>>> Single = FPSort(8, 24)
>>> Double = FPSort(11, 53)
>>> Single
FPSort(8, 24)
>>> x = Const('x', Single)
>>> eq(x, FP('x', FPSort(8, 24)))
True
Definition at line 10275 of file z3py.py.
| fpSqrt | ( | rm, | |
| a, | |||
ctx = None |
|||
| ) |
| fpSub | ( | rm, | |
| a, | |||
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point subtraction expression.
>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpSub(rm, x, y)
x - y
>>> fpSub(rm, x, y).sort()
FPSort(8, 24)
Definition at line 10597 of file z3py.py.
| fpToFP | ( | a1, | |
a2 = None, |
|||
a3 = None, |
|||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression from other term sorts to floating-point. From a bit-vector term in IEEE 754-2008 format: >>> x = FPVal(1.0, Float32()) >>> x_bv = fpToIEEEBV(x) >>> simplify(fpToFP(x_bv, Float32())) 1 From a floating-point term with different precision: >>> x = FPVal(1.0, Float32()) >>> x_db = fpToFP(RNE(), x, Float64()) >>> x_db.sort() FPSort(11, 53) From a real term: >>> x_r = RealVal(1.5) >>> simplify(fpToFP(RNE(), x_r, Float32())) 1.5 From a signed bit-vector term: >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> simplify(fpToFP(RNE(), x_signed, Float32())) -1.25*(2**2)
Definition at line 10863 of file z3py.py.
| fpToFPUnsigned | ( | rm, | |
| x, | |||
| s, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.
Definition at line 10993 of file z3py.py.
| fpToIEEEBV | ( | x, | |
ctx = None |
|||
| ) |
\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
The size of the resulting bit-vector is automatically determined.
Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
knows only one NaN and it will always produce the same bit-vector representation of
that NaN.
>>> x = FP('x', FPSort(8, 24))
>>> y = fpToIEEEBV(x)
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False
Definition at line 11067 of file z3py.py.
| fpToReal | ( | x, | |
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression, from floating-point expression to real.
>>> x = FP('x', FPSort(8, 24))
>>> y = fpToReal(x)
>>> print(is_fp(x))
True
>>> print(is_real(y))
True
>>> print(is_fp(y))
False
>>> print(is_real(x))
False
Definition at line 11047 of file z3py.py.
| fpToSBV | ( | rm, | |
| x, | |||
| s, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.
>>> x = FP('x', FPSort(8, 24))
>>> y = fpToSBV(RTZ(), x, BitVecSort(32))
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False
Definition at line 11003 of file z3py.py.
| fpToUBV | ( | rm, | |
| x, | |||
| s, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.
>>> x = FP('x', FPSort(8, 24))
>>> y = fpToUBV(RTZ(), x, BitVecSort(32))
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False
Definition at line 11025 of file z3py.py.
| fpUnsignedToFP | ( | rm, | |
| v, | |||
| sort, | |||
ctx = None |
|||
| ) |
Create a Z3 floating-point conversion expression that represents the conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFPUnsigned(RNE(), 4294967291) >>> simplify(x_fp) 1*(2**32)
Definition at line 10975 of file z3py.py.
| FPVal | ( | sig, | |
exp = None, |
|||
fps = None, |
|||
ctx = None |
|||
| ) |
Return a floating-point value of value `val` and sort `fps`.
If `ctx=None`, then the global context is used.
>>> v = FPVal(20.0, FPSort(8, 24))
>>> v
1.25*(2**4)
>>> print("0x%.8x" % v.exponent_as_long(False))
0x00000004
>>> v = FPVal(2.25, FPSort(8, 24))
>>> v
1.125*(2**1)
>>> v = FPVal(-2.25, FPSort(8, 24))
>>> v
-1.125*(2**1)
>>> FPVal(-0.0, FPSort(8, 24))
-0.0
>>> FPVal(0.0, FPSort(8, 24))
+0.0
>>> FPVal(+0.0, FPSort(8, 24))
+0.0
Definition at line 10400 of file z3py.py.
| fpZero | ( | s, | |
| negative | |||
| ) |
Create a Z3 floating-point +0.0 or -0.0 term.
Definition at line 10393 of file z3py.py.
| FreshBool | ( | prefix = "b", |
|
ctx = None |
|||
| ) |
Return a fresh Boolean constant in the given context using the given prefix. If `ctx=None`, then the global context is used. >>> b1 = FreshBool() >>> b2 = FreshBool() >>> eq(b1, b2) False
Definition at line 1904 of file z3py.py.
| FreshConst | ( | sort, | |
prefix = "c" |
|||
| ) |
Create a fresh constant of a specified sort
Definition at line 1567 of file z3py.py.
| FreshFunction | ( | * | sig | ) |
Create a new fresh Z3 uninterpreted function with the given sorts.
Definition at line 943 of file z3py.py.
| FreshInt | ( | prefix = "x", |
|
ctx = None |
|||
| ) |
Return a fresh integer constant in the given context using the given prefix. >>> x = FreshInt() >>> y = FreshInt() >>> eq(x, y) False >>> x.sort() Int
Definition at line 3434 of file z3py.py.
| FreshReal | ( | prefix = "b", |
|
ctx = None |
|||
| ) |
Return a fresh real constant in the given context using the given prefix. >>> x = FreshReal() >>> y = FreshReal() >>> eq(x, y) False >>> x.sort() Real
Definition at line 3491 of file z3py.py.
| Full | ( | s | ) |
Create the regular expression that accepts the universal language >>> e = Full(ReSort(SeqSort(IntSort()))) >>> print(e) Full(ReSort(Seq(Int))) >>> e1 = Full(ReSort(StringSort())) >>> print(e1) Full(ReSort(String))
Definition at line 11370 of file z3py.py.
| FullSet | ( | s | ) |
| Function | ( | name, | |
| * | sig | ||
| ) |
Create a new Z3 uninterpreted function with the given sorts.
>>> f = Function('f', IntSort(), IntSort())
>>> f(f(0))
f(f(0))
Definition at line 920 of file z3py.py.
| get_as_array_func | ( | n | ) |
Return the function declaration f associated with a Z3 expression of the form (_ as-array f).
Definition at line 6948 of file z3py.py.
Referenced by ModelRef.get_interp().
| Context get_ctx | ( | ctx | ) |
| get_default_fp_sort | ( | ctx = None | ) |
| get_default_rounding_mode | ( | ctx = None | ) |
Retrieves the global default rounding mode.
Definition at line 9654 of file z3py.py.
| get_full_version | ( | ) |
| get_map_func | ( | a | ) |
Return the function declaration associated with a Z3 map array expression.
>>> f = Function('f', IntSort(), IntSort())
>>> b = Array('b', IntSort(), IntSort())
>>> a = Map(f, b)
>>> eq(f, get_map_func(a))
True
>>> get_map_func(a)
f
>>> get_map_func(a)(0)
f(0)
Definition at line 4853 of file z3py.py.
| get_param | ( | name | ) |
Return the value of a Z3 global (or module) parameter
>>> get_param('nlsat.reorder')
'true'
Definition at line 334 of file z3py.py.
| get_var_index | ( | a | ) |
Return the de-Bruijn index of the Z3 bounded variable `a`.
>>> x = Int('x')
>>> y = Int('y')
>>> is_var(x)
False
>>> is_const(x)
True
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> # Z3 replaces x and y with bound variables when ForAll is executed.
>>> q = ForAll([x, y], f(x, y) == x + y)
>>> q.body()
f(Var(1), Var(0)) == Var(1) + Var(0)
>>> b = q.body()
>>> b.arg(0)
f(Var(1), Var(0))
>>> v1 = b.arg(0).arg(0)
>>> v2 = b.arg(0).arg(1)
>>> v1
Var(1)
>>> v2
Var(0)
>>> get_var_index(v1)
1
>>> get_var_index(v2)
0
Definition at line 1438 of file z3py.py.
| get_version | ( | ) |
Definition at line 100 of file z3py.py.
| get_version_string | ( | ) |
Definition at line 91 of file z3py.py.
| help_simplify | ( | ) |
Return a string describing all options available for Z3 `simplify` procedure.
Definition at line 9160 of file z3py.py.
| If | ( | a, | |
| b, | |||
| c, | |||
ctx = None |
|||
| ) |
Create a Z3 if-then-else expression.
>>> x = Int('x')
>>> y = Int('y')
>>> max = If(x > y, x, y)
>>> max
If(x > y, x, y)
>>> simplify(max)
If(x <= y, y, x)
Definition at line 1484 of file z3py.py.
Referenced by BoolRef.__add__(), BoolRef.__mul__(), ArithRef.__mul__(), and ToReal().
| Implies | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 implies expression.
>>> p, q = Bools('p q')
>>> Implies(p, q)
Implies(p, q)
Definition at line 1918 of file z3py.py.
| IndexOf | ( | s, | |
| substr, | |||
offset = None |
|||
| ) |
Retrieve the index of substring within a string starting at a specified offset.
>>> simplify(IndexOf("abcabc", "bc", 0))
1
>>> simplify(IndexOf("abcabc", "bc", 2))
4
Definition at line 11454 of file z3py.py.
| InRe | ( | s, | |
| re | |||
| ) |
Create regular expression membership test
>>> re = Union(Re("a"),Re("b"))
>>> print (simplify(InRe("a", re)))
True
>>> print (simplify(InRe("b", re)))
True
>>> print (simplify(InRe("c", re)))
False
Definition at line 11593 of file z3py.py.
| Int | ( | name, | |
ctx = None |
|||
| ) |
Return an integer constant named `name`. If `ctx=None`, then the global context is used.
>>> x = Int('x')
>>> is_int(x)
True
>>> is_int(x + 1)
True
Definition at line 3395 of file z3py.py.
Referenced by Ints(), and IntVector().
| Int2BV | ( | a, | |
| num_bits | |||
| ) |
Return the z3 expression Int2BV(a, num_bits). It is a bit-vector of width num_bits and represents the modulo of a by 2^num_bits
Definition at line 4150 of file z3py.py.
| Intersect | ( | * | args | ) |
Create intersection of regular expressions.
>>> re = Intersect(Re("a"), Re("b"), Re("c"))
Definition at line 11627 of file z3py.py.
| Ints | ( | names, | |
ctx = None |
|||
| ) |
Return a tuple of Integer constants.
>>> x, y, z = Ints('x y z')
>>> Sum(x, y, z)
x + y + z
Definition at line 3408 of file z3py.py.
| IntSort | ( | ctx = None | ) |
Return the integer sort in the given context. If `ctx=None`, then the global context is used.
>>> IntSort()
Int
>>> x = Const('x', IntSort())
>>> is_int(x)
True
>>> x.sort() == IntSort()
True
>>> x.sort() == BoolSort()
False
Definition at line 3287 of file z3py.py.
Referenced by FreshInt(), Int(), and IntVal().
| IntToStr | ( | s | ) |
| IntVal | ( | val, | |
ctx = None |
|||
| ) |
Return a Z3 integer value. If `ctx=None`, then the global context is used.
>>> IntVal(1)
1
>>> IntVal("100")
100
Definition at line 3333 of file z3py.py.
Referenced by BoolRef.__mul__(), and _py2expr().
| IntVector | ( | prefix, | |
| sz, | |||
ctx = None |
|||
| ) |
Return a list of integer constants of size `sz`.
>>> X = IntVector('x', 3)
>>> X
[x__0, x__1, x__2]
>>> Sum(X)
x__0 + x__1 + x__2
Definition at line 3421 of file z3py.py.
| bool is_add | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b + c.
>>> x, y = Ints('x y')
>>> is_add(x + y)
True
>>> is_add(x - y)
False
Definition at line 2935 of file z3py.py.
| is_algebraic_value | ( | a | ) |
Return `True` if `a` is an algebraic value of sort Real.
>>> is_algebraic_value(RealVal("3/5"))
False
>>> n = simplify(Sqrt(2))
>>> n
1.4142135623?
>>> is_algebraic_value(n)
True
Definition at line 2921 of file z3py.py.
| bool is_and | ( | Any | a | ) |
Return `True` if `a` is a Z3 and expression.
>>> p, q = Bools('p q')
>>> is_and(And(p, q))
True
>>> is_and(Or(p, q))
False
Definition at line 1754 of file z3py.py.
| is_app | ( | a | ) |
Return `True` if `a` is a Z3 function application.
Note that, constants are function applications with 0 arguments.
>>> a = Int('a')
>>> is_app(a)
True
>>> is_app(a + 1)
True
>>> is_app(IntSort())
False
>>> is_app(1)
False
>>> is_app(IntVal(1))
True
>>> x = Int('x')
>>> is_app(ForAll(x, x >= 0))
False
Definition at line 1368 of file z3py.py.
Referenced by _mk_quantifier(), ExprRef.arg(), ExprRef.children(), ExprRef.decl(), is_app_of(), is_const(), ExprRef.kind(), Lambda(), ExprRef.num_args(), RecAddDefinition(), and ExprRef.update().
| is_app_of | ( | a, | |
| k | |||
| ) |
Return `True` if `a` is an application of the given kind `k`.
>>> x = Int('x')
>>> n = x + 1
>>> is_app_of(n, Z3_OP_ADD)
True
>>> is_app_of(n, Z3_OP_MUL)
False
Definition at line 1471 of file z3py.py.
Referenced by is_add(), is_and(), is_const_array(), is_default(), is_distinct(), is_div(), is_eq(), is_false(), is_ge(), is_gt(), is_idiv(), is_implies(), is_is_int(), is_K(), is_le(), is_lt(), is_map(), is_mod(), is_mul(), is_not(), is_or(), is_select(), is_store(), is_sub(), is_to_int(), is_to_real(), and is_true().
| is_arith | ( | a | ) |
Return `True` if `a` is an arithmetical expression.
>>> x = Int('x')
>>> is_arith(x)
True
>>> is_arith(x + 1)
True
>>> is_arith(1)
False
>>> is_arith(IntVal(1))
True
>>> y = Real('y')
>>> is_arith(y)
True
>>> is_arith(y + 1)
True
Definition at line 2808 of file z3py.py.
Referenced by is_algebraic_value(), is_int(), is_int_value(), is_rational_value(), and is_real().
| bool is_arith_sort | ( | Any | s | ) |
Return `True` if s is an arithmetical sort (type).
>>> is_arith_sort(IntSort())
True
>>> is_arith_sort(RealSort())
True
>>> is_arith_sort(BoolSort())
False
>>> n = Int('x') + 1
>>> is_arith_sort(n.sort())
True
Definition at line 2507 of file z3py.py.
Referenced by ArithSortRef.subsort().
| bool is_array | ( | Any | a | ) |
Return `True` if `a` is a Z3 array expression.
>>> a = Array('a', IntSort(), IntSort())
>>> is_array(a)
True
>>> is_array(Store(a, 0, 1))
True
>>> is_array(a[0])
False
Definition at line 4788 of file z3py.py.
| is_as_array | ( | n | ) |
Return true if n is a Z3 expression of the form (_ as-array f).
Definition at line 6943 of file z3py.py.
Referenced by get_as_array_func(), and ModelRef.get_interp().
| bool is_ast | ( | Any | a | ) |
Return `True` if `a` is an AST node.
>>> is_ast(10)
False
>>> is_ast(IntVal(10))
True
>>> is_ast(Int('x'))
True
>>> is_ast(BoolSort())
True
>>> is_ast(Function('f', IntSort(), IntSort()))
True
>>> is_ast("x")
False
>>> is_ast(Solver())
False
Definition at line 482 of file z3py.py.
Referenced by _ast_kind(), _ctx_from_ast_arg_list(), eq(), and AstRef.eq().
| bool is_bool | ( | Any | a | ) |
Return `True` if `a` is a Z3 Boolean expression.
>>> p = Bool('p')
>>> is_bool(p)
True
>>> q = Bool('q')
>>> is_bool(And(p, q))
True
>>> x = Real('x')
>>> is_bool(x)
False
>>> is_bool(x == 0)
True
Definition at line 1704 of file z3py.py.
Referenced by _mk_quantifier().
| is_bv | ( | a | ) |
Return `True` if `a` is a Z3 bit-vector expression.
>>> b = BitVec('b', 32)
>>> is_bv(b)
True
>>> is_bv(b + 10)
True
>>> is_bv(Int('x'))
False
Definition at line 4098 of file z3py.py.
Referenced by _check_bv_args(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), Concat(), Extract(), is_bv_value(), RepeatBitVec(), SignExt(), and ZeroExt().
| is_bv_sort | ( | s | ) |
Return True if `s` is a Z3 bit-vector sort. >>> is_bv_sort(BitVecSort(32)) True >>> is_bv_sort(IntSort()) False
Definition at line 3625 of file z3py.py.
Referenced by BitVecVal(), and BitVecSortRef.subsort().
| is_bv_value | ( | a | ) |
Return `True` if `a` is a Z3 bit-vector numeral value.
>>> b = BitVec('b', 32)
>>> is_bv_value(b)
False
>>> b = BitVecVal(10, 32)
>>> b
10
>>> is_bv_value(b)
True
Definition at line 4112 of file z3py.py.
| is_const | ( | a | ) |
Return `True` if `a` is Z3 constant/variable expression.
>>> a = Int('a')
>>> is_const(a)
True
>>> is_const(a + 1)
False
>>> is_const(1)
False
>>> is_const(IntVal(1))
True
>>> x = Int('x')
>>> is_const(ForAll(x, x >= 0))
False
Definition at line 1394 of file z3py.py.
Referenced by ModelRef.__getitem__(), _mk_quantifier(), Solver.assert_and_track(), and ModelRef.get_interp().
| is_const_array | ( | a | ) |
Return `True` if `a` is a Z3 constant array.
>>> a = K(IntSort(), 10)
>>> is_const_array(a)
True
>>> a = Array('a', IntSort(), IntSort())
>>> is_const_array(a)
False
Definition at line 4802 of file z3py.py.
| is_default | ( | a | ) |
Return `True` if `a` is a Z3 default array expression. >>> d = Default(K(IntSort(), 10)) >>> is_default(d) True
Definition at line 4844 of file z3py.py.
| bool is_distinct | ( | Any | a | ) |
Return `True` if `a` is a Z3 distinct expression.
>>> x, y, z = Ints('x y z')
>>> is_distinct(x == y)
False
>>> is_distinct(Distinct(x, y, z))
True
Definition at line 1812 of file z3py.py.
| bool is_div | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b / c.
>>> x, y = Reals('x y')
>>> is_div(x / y)
True
>>> is_div(x + y)
False
>>> x, y = Ints('x y')
>>> is_div(x / y)
False
>>> is_idiv(x / y)
True
Definition at line 2971 of file z3py.py.
| bool is_eq | ( | Any | a | ) |
Return `True` if `a` is a Z3 equality expression.
>>> x, y = Ints('x y')
>>> is_eq(x == y)
True
Definition at line 1802 of file z3py.py.
Referenced by AstRef.__bool__().
| is_expr | ( | a | ) |
Return `True` if `a` is a Z3 expression.
>>> a = Int('a')
>>> is_expr(a)
True
>>> is_expr(a + 1)
True
>>> is_expr(IntSort())
False
>>> is_expr(1)
False
>>> is_expr(IntVal(1))
True
>>> x = Int('x')
>>> is_expr(ForAll(x, x >= 0))
True
>>> is_expr(FPVal(1.0))
True
Definition at line 1345 of file z3py.py.
Referenced by _coerce_expr_list(), _coerce_expr_merge(), _coerce_exprs(), _mk_quantifier(), _py2expr(), SortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), Cbrt(), Concat(), is_var(), K(), MultiPattern(), Sqrt(), ExprRef.update(), DatatypeRef.update_field(), and ModelRef.update_value().
| bool is_false | ( | Any | a | ) |
Return `True` if `a` is the Z3 false expression.
>>> p = Bool('p')
>>> is_false(p)
False
>>> is_false(False)
False
>>> is_false(BoolVal(False))
True
Definition at line 1740 of file z3py.py.
Referenced by AstRef.__bool__(), and BoolRef.py_value().
| is_finite_domain | ( | a | ) |
Return `True` if `a` is a Z3 finite-domain expression.
>>> s = FiniteDomainSort('S', 100)
>>> b = Const('b', s)
>>> is_finite_domain(b)
True
>>> is_finite_domain(Int('x'))
False
Definition at line 8036 of file z3py.py.
| is_finite_domain_sort | ( | s | ) |
Return True if `s` is a Z3 finite-domain sort.
>>> is_finite_domain_sort(FiniteDomainSort('S', 100))
True
>>> is_finite_domain_sort(IntSort())
False
Definition at line 8013 of file z3py.py.
| is_finite_domain_value | ( | a | ) |
Return `True` if `a` is a Z3 finite-domain value.
>>> s = FiniteDomainSort('S', 100)
>>> b = Const('b', s)
>>> is_finite_domain_value(b)
False
>>> b = FiniteDomainVal(10, s)
>>> b
10
>>> is_finite_domain_value(b)
True
Definition at line 8090 of file z3py.py.
| is_fp | ( | a | ) |
Return `True` if `a` is a Z3 floating-point expression.
>>> b = FP('b', FPSort(8, 24))
>>> is_fp(b)
True
>>> is_fp(b + 1.0)
True
>>> is_fp(Int('x'))
False
Definition at line 10246 of file z3py.py.
| is_fp_sort | ( | s | ) |
Return True if `s` is a Z3 floating-point sort. >>> is_fp_sort(FPSort(8, 24)) True >>> is_fp_sort(IntSort()) False
Definition at line 9820 of file z3py.py.
| is_fp_value | ( | a | ) |
Return `True` if `a` is a Z3 floating-point numeral value.
>>> b = FP('b', FPSort(8, 24))
>>> is_fp_value(b)
False
>>> b = FPVal(1.0, FPSort(8, 24))
>>> b
1
>>> is_fp_value(b)
True
Definition at line 10260 of file z3py.py.
| is_fprm | ( | a | ) |
Return `True` if `a` is a Z3 floating-point rounding mode expression. >>> rm = RNE() >>> is_fprm(rm) True >>> rm = 1.0 >>> is_fprm(rm) False
Definition at line 10080 of file z3py.py.
| is_fprm_sort | ( | s | ) |
Return True if `s` is a Z3 floating-point rounding mode sort. >>> is_fprm_sort(FPSort(8, 24)) False >>> is_fprm_sort(RNE().sort()) True
Definition at line 9831 of file z3py.py.
| is_fprm_value | ( | a | ) |
Return `True` if `a` is a Z3 floating-point rounding mode numeral value.
Definition at line 10093 of file z3py.py.
| is_func_decl | ( | a | ) |
Return `True` if `a` is a Z3 function declaration.
>>> f = Function('f', IntSort(), IntSort())
>>> is_func_decl(f)
True
>>> x = Real('x')
>>> is_func_decl(x)
False
Definition at line 907 of file z3py.py.
Referenced by Map(), DatatypeRef.update_field(), and ModelRef.update_value().
| bool is_ge | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b >= c.
>>> x, y = Ints('x y')
>>> is_ge(x >= y)
True
>>> is_ge(x == y)
False
Definition at line 3036 of file z3py.py.
| bool is_gt | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b > c.
>>> x, y = Ints('x y')
>>> is_gt(x > y)
True
>>> is_gt(x == y)
False
Definition at line 3048 of file z3py.py.
| bool is_idiv | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b div c.
>>> x, y = Ints('x y')
>>> is_idiv(x / y)
True
>>> is_idiv(x + y)
False
Definition at line 2988 of file z3py.py.
| bool is_implies | ( | Any | a | ) |
Return `True` if `a` is a Z3 implication expression.
>>> p, q = Bools('p q')
>>> is_implies(Implies(p, q))
True
>>> is_implies(And(p, q))
False
Definition at line 1778 of file z3py.py.
| bool is_int | ( | a | ) |
Return `True` if `a` is an integer expression.
>>> x = Int('x')
>>> is_int(x + 1)
True
>>> is_int(1)
False
>>> is_int(IntVal(1))
True
>>> y = Real('y')
>>> is_int(y)
False
>>> is_int(y + 1)
False
Definition at line 2829 of file z3py.py.
| is_int_value | ( | a | ) |
Return `True` if `a` is an integer value of sort Int.
>>> is_int_value(IntVal(1))
True
>>> is_int_value(1)
False
>>> is_int_value(Int('x'))
False
>>> n = Int('x') + 1
>>> n
x + 1
>>> n.arg(1)
1
>>> is_int_value(n.arg(1))
True
>>> is_int_value(RealVal("1/3"))
False
>>> is_int_value(RealVal(1))
False
Definition at line 2875 of file z3py.py.
| bool is_is_int | ( | Any | a | ) |
Return `True` if `a` is an expression of the form IsInt(b).
>>> x = Real('x')
>>> is_is_int(IsInt(x))
True
>>> is_is_int(x)
False
Definition at line 3060 of file z3py.py.
| is_K | ( | a | ) |
Return `True` if `a` is a Z3 constant array.
>>> a = K(IntSort(), 10)
>>> is_K(a)
True
>>> a = Array('a', IntSort(), IntSort())
>>> is_K(a)
False
Definition at line 4815 of file z3py.py.
| bool is_le | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b <= c.
>>> x, y = Ints('x y')
>>> is_le(x <= y)
True
>>> is_le(x < y)
False
Definition at line 3012 of file z3py.py.
| bool is_lt | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b < c.
>>> x, y = Ints('x y')
>>> is_lt(x < y)
True
>>> is_lt(x == y)
False
Definition at line 3024 of file z3py.py.
| is_map | ( | a | ) |
Return `True` if `a` is a Z3 map array expression.
>>> f = Function('f', IntSort(), IntSort())
>>> b = Array('b', IntSort(), IntSort())
>>> a = Map(f, b)
>>> a
Map(f, b)
>>> is_map(a)
True
>>> is_map(b)
False
Definition at line 4828 of file z3py.py.
Referenced by get_map_func().
| bool is_mod | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b % c.
>>> x, y = Ints('x y')
>>> is_mod(x % y)
True
>>> is_mod(x + y)
False
Definition at line 3000 of file z3py.py.
| bool is_mul | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b * c.
>>> x, y = Ints('x y')
>>> is_mul(x * y)
True
>>> is_mul(x - y)
False
Definition at line 2947 of file z3py.py.
| bool is_not | ( | Any | a | ) |
Return `True` if `a` is a Z3 not expression.
>>> p = Bool('p')
>>> is_not(p)
False
>>> is_not(Not(p))
True
Definition at line 1790 of file z3py.py.
Referenced by mk_not().
| bool is_or | ( | Any | a | ) |
Return `True` if `a` is a Z3 or expression.
>>> p, q = Bools('p q')
>>> is_or(Or(p, q))
True
>>> is_or(And(p, q))
False
Definition at line 1766 of file z3py.py.
| is_pattern | ( | a | ) |
Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.
>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
>>> q
ForAll(x, f(x) == 0)
>>> q.num_patterns()
1
>>> is_pattern(q.pattern(0))
True
>>> q.pattern(0)
f(Var(0))
Definition at line 2066 of file z3py.py.
Referenced by _mk_quantifier(), and _to_pattern().
| is_probe | ( | p | ) |
Return `True` if `p` is a Z3 probe.
>>> is_probe(Int('x'))
False
>>> is_probe(Probe('memory'))
True
Definition at line 9001 of file z3py.py.
Referenced by _ctx_from_ast_arg_list(), _has_probe(), and Not().
| is_quantifier | ( | a | ) |
Return `True` if `a` is a Z3 quantifier.
>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) == 0)
>>> is_quantifier(q)
True
>>> is_quantifier(f(x))
False
Definition at line 2316 of file z3py.py.
| is_rational_value | ( | a | ) |
Return `True` if `a` is rational value of sort Real.
>>> is_rational_value(RealVal(1))
True
>>> is_rational_value(RealVal("3/5"))
True
>>> is_rational_value(IntVal(1))
False
>>> is_rational_value(1)
False
>>> n = Real('x') + 1
>>> n.arg(1)
1
>>> is_rational_value(n.arg(1))
True
>>> is_rational_value(Real('x'))
False
Definition at line 2899 of file z3py.py.
| is_re | ( | s | ) |
| is_real | ( | a | ) |
Return `True` if `a` is a real expression.
>>> x = Int('x')
>>> is_real(x + 1)
False
>>> y = Real('y')
>>> is_real(y)
True
>>> is_real(y + 1)
True
>>> is_real(1)
False
>>> is_real(RealVal(1))
True
Definition at line 2848 of file z3py.py.
| is_select | ( | a | ) |
Return `True` if `a` is a Z3 array select application.
>>> a = Array('a', IntSort(), IntSort())
>>> is_select(a)
False
>>> i = Int('i')
>>> is_select(a[i])
True
Definition at line 5056 of file z3py.py.
| is_seq | ( | a | ) |
Return `True` if `a` is a Z3 sequence expression.
>>> print (is_seq(Unit(IntVal(0))))
True
>>> print (is_seq(StringVal("abc")))
True
Definition at line 11271 of file z3py.py.
| bool is_sort | ( | Any | s | ) |
Return `True` if `s` is a Z3 sort.
>>> is_sort(IntSort())
True
>>> is_sort(Int('x'))
False
>>> is_expr(Int('x'))
True
Definition at line 682 of file z3py.py.
Referenced by _valid_accessor(), ArraySort(), CreateDatatypes(), FreshConst(), FreshFunction(), Function(), K(), RecFunction(), and Var().
| is_store | ( | a | ) |
Return `True` if `a` is a Z3 array store application.
>>> a = Array('a', IntSort(), IntSort())
>>> is_store(a)
False
>>> is_store(Store(a, 0, 1))
True
Definition at line 5069 of file z3py.py.
| bool is_string | ( | Any | a | ) |
Return `True` if `a` is a Z3 string expression.
>>> print (is_string(StringVal("ab")))
True
Definition at line 11281 of file z3py.py.
| bool is_string_value | ( | Any | a | ) |
return 'True' if 'a' is a Z3 string constant expression.
>>> print (is_string_value(StringVal("a")))
True
>>> print (is_string_value(StringVal("a") + StringVal("b")))
False
Definition at line 11289 of file z3py.py.
| bool is_sub | ( | Any | a | ) |
Return `True` if `a` is an expression of the form b - c.
>>> x, y = Ints('x y')
>>> is_sub(x - y)
True
>>> is_sub(x + y)
False
Definition at line 2959 of file z3py.py.
| bool is_to_int | ( | Any | a | ) |
Return `True` if `a` is an expression of the form ToInt(b).
>>> x = Real('x')
>>> n = ToInt(x)
>>> n
ToInt(x)
>>> is_to_int(n)
True
>>> is_to_int(x)
False
Definition at line 3087 of file z3py.py.
| bool is_to_real | ( | Any | a | ) |
Return `True` if `a` is an expression of the form ToReal(b).
>>> x = Int('x')
>>> n = ToReal(x)
>>> n
ToReal(x)
>>> is_to_real(n)
True
>>> is_to_real(x)
False
Definition at line 3072 of file z3py.py.
| bool is_true | ( | Any | a | ) |
Return `True` if `a` is the Z3 true expression.
>>> p = Bool('p')
>>> is_true(p)
False
>>> is_true(simplify(p == p))
True
>>> x = Real('x')
>>> is_true(x == 0)
False
>>> # True is a Python Boolean expression
>>> is_true(True)
False
Definition at line 1722 of file z3py.py.
Referenced by AstRef.__bool__(), and BoolRef.py_value().
| is_var | ( | a | ) |
Return `True` if `a` is variable.
Z3 uses de-Bruijn indices for representing bound variables in
quantifiers.
>>> x = Int('x')
>>> is_var(x)
False
>>> is_const(x)
True
>>> f = Function('f', IntSort(), IntSort())
>>> # Z3 replaces x with bound variables when ForAll is executed.
>>> q = ForAll(x, f(x) == x)
>>> b = q.body()
>>> b
f(Var(0)) == Var(0)
>>> b.arg(1)
Var(0)
>>> is_var(b.arg(1))
True
Definition at line 1413 of file z3py.py.
Referenced by get_var_index().
| IsInt | ( | a | ) |
Return the Z3 predicate IsInt(a).
>>> x = Real('x')
>>> IsInt(x + "1/2")
IsInt(x + 1/2)
>>> solve(IsInt(x + "1/2"), x > 0, x < 1)
[x = 1/2]
>>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
no solution
Definition at line 3543 of file z3py.py.
| IsMember | ( | e, | |
| s | |||
| ) |
Check if e is a member of set s
>>> a = Const('a', SetSort(IntSort()))
>>> IsMember(1, a)
a[1]
Definition at line 5179 of file z3py.py.
| IsSubset | ( | a, | |
| b | |||
| ) |
Check if a is a subset of b
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> IsSubset(a, b)
subset(a, b)
Definition at line 5190 of file z3py.py.
| K | ( | dom, | |
| v | |||
| ) |
Return a Z3 constant array expression.
>>> a = K(IntSort(), 10)
>>> a
K(Int, 10)
>>> a.sort()
Array(Int, Int)
>>> i = Int('i')
>>> a[i]
K(Int, 10)[i]
>>> simplify(a[i])
10
Definition at line 5023 of file z3py.py.
Referenced by ModelRef.get_interp().
| Lambda | ( | vs, | |
| body | |||
| ) |
Create a Z3 lambda expression.
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> mem0 = Array('mem0', IntSort(), IntSort())
>>> lo, hi, e, i = Ints('lo hi e i')
>>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
>>> mem1
Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
Definition at line 2404 of file z3py.py.
| LastIndexOf | ( | s, | |
| substr | |||
| ) |
Retrieve the last index of substring within a string
Definition at line 11474 of file z3py.py.
| Length | ( | s | ) |
Obtain the length of a sequence 's'
>>> l = Length(StringVal("abc"))
>>> simplify(l)
3
Definition at line 11483 of file z3py.py.
| LinearOrder | ( | a, | |
| index | |||
| ) |
| Loop | ( | re, | |
| lo, | |||
hi = 0 |
|||
| ) |
Create the regular expression accepting between a lower and upper bound repetitions
>>> re = Loop(Re("a"), 1, 3)
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("aaaa", re)))
False
>>> print(simplify(InRe("", re)))
False
Definition at line 11695 of file z3py.py.
| LShR | ( | a, | |
| b | |||
| ) |
Create the Z3 expression logical right shift.
Use the operator >> for the arithmetical right shift.
>>> x, y = BitVecs('x y', 32)
>>> LShR(x, y)
LShR(x, y)
>>> (x >> y).sexpr()
'(bvashr x y)'
>>> LShR(x, y).sexpr()
'(bvlshr x y)'
>>> BitVecVal(4, 3)
4
>>> BitVecVal(4, 3).as_signed_long()
-4
>>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
-2
>>> simplify(BitVecVal(4, 3) >> 1)
6
>>> simplify(LShR(BitVecVal(4, 3), 1))
2
>>> simplify(BitVecVal(2, 3) >> 1)
1
>>> simplify(LShR(BitVecVal(2, 3), 1))
1
Definition at line 4476 of file z3py.py.
| Context main_ctx | ( | ) |
Return a reference to the global Z3 context.
>>> x = Real('x')
>>> x.ctx == main_ctx()
True
>>> c = Context()
>>> c == main_ctx()
False
>>> x2 = Real('x', c)
>>> x2.ctx == c
True
>>> eq(x, x2)
False
Definition at line 266 of file z3py.py.
Referenced by _get_ctx().
| Map | ( | f, | |
| * | args | ||
| ) |
Return a Z3 map array expression.
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> a1 = Array('a1', IntSort(), IntSort())
>>> a2 = Array('a2', IntSort(), IntSort())
>>> b = Map(f, a1, a2)
>>> b
Map(f, a1, a2)
>>> prove(b[0] == f(a1[0], a2[0]))
proved
Definition at line 5000 of file z3py.py.
| mk_not | ( | a | ) |
| Model | ( | ctx = None, |
|
eval = {} |
|||
| ) |
Definition at line 6935 of file z3py.py.
| MultiPattern | ( | * | args | ) |
Create a Z3 multi-pattern using the given expressions `*args`
>>> f = Function('f', IntSort(), IntSort())
>>> g = Function('g', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
>>> q
ForAll(x, f(x) != g(x))
>>> q.num_patterns()
1
>>> is_pattern(q.pattern(0))
True
>>> q.pattern(0)
MultiPattern(f(Var(0)), g(Var(0)))
Definition at line 2084 of file z3py.py.
Referenced by _to_pattern().
| Not | ( | a, | |
ctx = None |
|||
| ) |
Create a Z3 not expression or probe.
>>> p = Bool('p')
>>> Not(Not(p))
Not(Not(p))
>>> simplify(Not(Not(p)))
p
Definition at line 1948 of file z3py.py.
Referenced by BoolRef.__invert__(), and mk_not().
| on_clause_eh | ( | ctx, | |
| p, | |||
| n, | |||
| dep, | |||
| clause | |||
| ) |
Definition at line 11785 of file z3py.py.
| open_log | ( | fname | ) |
Log interaction to a file. This function must be invoked immediately after init().
Definition at line 122 of file z3py.py.
| Option | ( | re | ) |
Create the regular expression that optionally accepts the argument.
>>> re = Option(Re("a"))
>>> print(simplify(InRe("a", re)))
True
>>> print(simplify(InRe("", re)))
True
>>> print(simplify(InRe("aa", re)))
False
Definition at line 11660 of file z3py.py.
| Or | ( | * | args | ) |
Create a Z3 or-expression or or-probe.
>>> p, q, r = Bools('p q r')
>>> Or(p, q, r)
Or(p, q, r)
>>> P = BoolVector('p', 5)
>>> Or(P)
Or(p__0, p__1, p__2, p__3, p__4)
Definition at line 2015 of file z3py.py.
Referenced by BoolRef.__or__().
| OrElse | ( | * | ts, |
| ** | ks | ||
| ) |
Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).
>>> x = Int('x')
>>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
>>> # Tactic split-clause fails if there is no clause in the given goal.
>>> t(x == 0)
[[x == 0]]
>>> t(Or(x == 0, x == 1))
[[x == 0], [x == 1]]
Definition at line 8694 of file z3py.py.
| ParAndThen | ( | t1, | |
| t2, | |||
ctx = None |
|||
| ) |
| ParOr | ( | * | ts, |
| ** | ks | ||
| ) |
Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).
>>> x = Int('x')
>>> t = ParOr(Tactic('simplify'), Tactic('fail'))
>>> t(x + 1 == 2)
[[x == 1]]
Definition at line 8715 of file z3py.py.
| parse_smt2_file | ( | f, | |
sorts = {}, |
|||
decls = {}, |
|||
ctx = None |
|||
| ) |
Parse a file in SMT 2.0 format using the given sorts and decls. This function is similar to parse_smt2_string().
Definition at line 9630 of file z3py.py.
| parse_smt2_string | ( | s, | |
sorts = {}, |
|||
decls = {}, |
|||
ctx = None |
|||
| ) |
Parse a string in SMT 2.0 format using the given sorts and decls.
The arguments sorts and decls are Python dictionaries used to initialize
the symbol table used for the SMT 2.0 parser.
>>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
[x > 0, x < 10]
>>> x, y = Ints('x y')
>>> f = Function('f', IntSort(), IntSort())
>>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
[x + f(y) > 0]
>>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
[a > 0]
Definition at line 9609 of file z3py.py.
| ParThen | ( | t1, | |
| t2, | |||
ctx = None |
|||
| ) |
Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
The subgoals are processed in parallel.
>>> x, y = Ints('x y')
>>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
>>> t(And(Or(x == 1, x == 2), y == x + 1))
[[x == 1, y == 2], [x == 2, y == 3]]
Definition at line 8734 of file z3py.py.
| PartialOrder | ( | a, | |
| index | |||
| ) |
| PbEq | ( | args, | |
| k, | |||
ctx = None |
|||
| ) |
Create a Pseudo-Boolean equality k constraint.
>>> a, b, c = Bools('a b c')
>>> f = PbEq(((a,1),(b,3),(c,2)), 3)
Definition at line 9386 of file z3py.py.
| PbGe | ( | args, | |
| k | |||
| ) |
Create a Pseudo-Boolean inequality k constraint.
>>> a, b, c = Bools('a b c')
>>> f = PbGe(((a,1),(b,3),(c,2)), 3)
Definition at line 9375 of file z3py.py.
| PbLe | ( | args, | |
| k | |||
| ) |
Create a Pseudo-Boolean inequality k constraint.
>>> a, b, c = Bools('a b c')
>>> f = PbLe(((a,1),(b,3),(c,2)), 3)
Definition at line 9364 of file z3py.py.
| PiecewiseLinearOrder | ( | a, | |
| index | |||
| ) |
| Plus | ( | re | ) |
Create the regular expression accepting one or more repetitions of argument.
>>> re = Plus(Re("a"))
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("ab", re)))
False
>>> print(simplify(InRe("", re)))
False
Definition at line 11645 of file z3py.py.
| PrefixOf | ( | a, | |
| b | |||
| ) |
Check if 'a' is a prefix of 'b'
>>> s1 = PrefixOf("ab", "abc")
>>> simplify(s1)
True
>>> s2 = PrefixOf("bc", "abc")
>>> simplify(s2)
False
Definition at line 11390 of file z3py.py.
| probe_description | ( | name, | |
ctx = None |
|||
| ) |
Return a short description for the probe named `name`.
>>> d = probe_description('memory')
Definition at line 9030 of file z3py.py.
| probes | ( | ctx = None | ) |
Return a list of all available probes in Z3.
>>> l = probes()
>>> l.count('memory') == 1
True
Definition at line 9019 of file z3py.py.
| Product | ( | * | args | ) |
Create the product of the Z3 expressions.
>>> a, b, c = Ints('a b c')
>>> Product(a, b, c)
a*b*c
>>> Product([a, b, c])
a*b*c
>>> A = IntVector('a', 5)
>>> Product(A)
a__0*a__1*a__2*a__3*a__4
Definition at line 9271 of file z3py.py.
| PropagateFunction | ( | name, | |
| * | sig | ||
| ) |
Create a function that gets tracked by user propagator. Every term headed by this function symbol is tracked. If a term is fixed and the fixed callback is registered a callback is invoked that the term headed by this function is fixed.
Definition at line 11950 of file z3py.py.
| prove | ( | claim, | |
show = False, |
|||
| ** | keywords | ||
| ) |
Try to prove the given claim.
This is a simple function for creating demonstrations. It tries to prove
`claim` by showing the negation is unsatisfiable.
>>> p, q = Bools('p q')
>>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
proved
Definition at line 9458 of file z3py.py.
| Q | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Return a Z3 rational a/b. If `ctx=None`, then the global context is used. >>> Q(3,5) 3/5 >>> Q(3,5).sort() Real
Definition at line 3382 of file z3py.py.
| Range | ( | lo, | |
| hi, | |||
ctx = None |
|||
| ) |
Create the range regular expression over two sequences of length 1
>>> range = Range("a","z")
>>> print(simplify(InRe("b", range)))
True
>>> print(simplify(InRe("bb", range)))
False
Definition at line 11710 of file z3py.py.
| RatVal | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Return a Z3 rational a/b. If `ctx=None`, then the global context is used. >>> RatVal(3,5) 3/5 >>> RatVal(3,5).sort() Real
Definition at line 3364 of file z3py.py.
Referenced by Q().
| Re | ( | s, | |
ctx = None |
|||
| ) |
The regular expression that accepts sequence 's'
>>> s1 = Re("ab")
>>> s2 = Re(StringVal("ab"))
>>> s3 = Re(Unit(BoolVal(True)))
Definition at line 11554 of file z3py.py.
| Real | ( | name, | |
ctx = None |
|||
| ) |
Return a real constant named `name`. If `ctx=None`, then the global context is used.
>>> x = Real('x')
>>> is_real(x)
True
>>> is_real(x + 1)
True
Definition at line 3448 of file z3py.py.
Referenced by Reals(), and RealVector().
| Reals | ( | names, | |
ctx = None |
|||
| ) |
Return a tuple of real constants.
>>> x, y, z = Reals('x y z')
>>> Sum(x, y, z)
x + y + z
>>> Sum(x, y, z).sort()
Real
Definition at line 3461 of file z3py.py.
| RealSort | ( | ctx = None | ) |
Return the real sort in the given context. If `ctx=None`, then the global context is used.
>>> RealSort()
Real
>>> x = Const('x', RealSort())
>>> is_real(x)
True
>>> is_int(x)
False
>>> x.sort() == RealSort()
True
Definition at line 3304 of file z3py.py.
Referenced by FreshReal(), Real(), RealVal(), and RealVar().
| RealVal | ( | val, | |
ctx = None |
|||
| ) |
Return a Z3 real value.
`val` may be a Python int, long, float or string representing a number in decimal or rational notation.
If `ctx=None`, then the global context is used.
>>> RealVal(1)
1
>>> RealVal(1).sort()
Real
>>> RealVal("3/5")
3/5
>>> RealVal("1.5")
3/2
Definition at line 3345 of file z3py.py.
Referenced by _coerce_exprs(), _py2expr(), Cbrt(), RatVal(), Sqrt(), and ToReal().
| ExprRef RealVar | ( | int | idx, |
ctx = None |
|||
| ) |
Create a real free variable. Free variables are used to create quantified formulas. They are also used to create polynomials. >>> RealVar(0) Var(0)
Definition at line 1590 of file z3py.py.
Referenced by RealVarVector().
| RealVarVector | ( | int | n, |
ctx = None |
|||
| ) |
Create a list of Real free variables. The variables have ids: 0, 1, ..., n-1 >>> x0, x1, x2, x3 = RealVarVector(4) >>> x2 Var(2)
Definition at line 1600 of file z3py.py.
| RealVector | ( | prefix, | |
| sz, | |||
ctx = None |
|||
| ) |
Return a list of real constants of size `sz`.
>>> X = RealVector('x', 3)
>>> X
[x__0, x__1, x__2]
>>> Sum(X)
x__0 + x__1 + x__2
>>> Sum(X).sort()
Real
Definition at line 3476 of file z3py.py.
| RecAddDefinition | ( | f, | |
| args, | |||
| body | |||
| ) |
Set the body of a recursive function.
Recursive definitions can be simplified if they are applied to ground
arguments.
>>> ctx = Context()
>>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
>>> n = Int('n', ctx)
>>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
>>> simplify(fac(5))
120
>>> s = Solver(ctx=ctx)
>>> s.add(fac(n) < 3)
>>> s.check()
sat
>>> s.model().eval(fac(5))
120
Definition at line 984 of file z3py.py.
| RecFunction | ( | name, | |
| * | sig | ||
| ) |
Create a new Z3 recursive with the given sorts.
Definition at line 966 of file z3py.py.
| Repeat | ( | t, | |
max = 4294967295, |
|||
ctx = None |
|||
| ) |
Return a tactic that keeps applying `t` until the goal is not modified anymore
or the maximum number of iterations `max` is reached.
>>> x, y = Ints('x y')
>>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
>>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
>>> r = t(c)
>>> for subgoal in r: print(subgoal)
[x == 0, y == 0, x > y]
[x == 0, y == 1, x > y]
[x == 1, y == 0, x > y]
[x == 1, y == 1, x > y]
>>> t = Then(t, Tactic('propagate-values'))
>>> t(c)
[[x == 1, y == 0]]
Definition at line 8783 of file z3py.py.
| RepeatBitVec | ( | n, | |
| a | |||
| ) |
Return an expression representing `n` copies of `a`.
>>> x = BitVec('x', 8)
>>> n = RepeatBitVec(4, x)
>>> n
RepeatBitVec(4, x)
>>> n.size()
32
>>> v0 = BitVecVal(10, 4)
>>> print("%.x" % v0.as_long())
a
>>> v = simplify(RepeatBitVec(4, v0))
>>> v.size()
16
>>> print("%.x" % v.as_long())
aaaa
Definition at line 4598 of file z3py.py.
| Replace | ( | s, | |
| src, | |||
| dst | |||
| ) |
Replace the first occurrence of 'src' by 'dst' in 's'
>>> r = Replace("aaa", "a", "b")
>>> simplify(r)
"baa"
Definition at line 11439 of file z3py.py.
| None reset_params | ( | ) |
Reset all global (or module) parameters.
Definition at line 322 of file z3py.py.
| ReSort | ( | s | ) |
Definition at line 11573 of file z3py.py.
| RNA | ( | ctx = None | ) |
| RNE | ( | ctx = None | ) |
| RotateLeft | ( | a, | |
| b | |||
| ) |
Return an expression representing `a` rotated to the left `b` times.
>>> a, b = BitVecs('a b', 16)
>>> RotateLeft(a, b)
RotateLeft(a, b)
>>> simplify(RotateLeft(a, 0))
a
>>> simplify(RotateLeft(a, 16))
a
Definition at line 4508 of file z3py.py.
| RotateRight | ( | a, | |
| b | |||
| ) |
Return an expression representing `a` rotated to the right `b` times.
>>> a, b = BitVecs('a b', 16)
>>> RotateRight(a, b)
RotateRight(a, b)
>>> simplify(RotateRight(a, 0))
a
>>> simplify(RotateRight(a, 16))
a
Definition at line 4524 of file z3py.py.
| RoundNearestTiesToAway | ( | ctx = None | ) |
| RoundNearestTiesToEven | ( | ctx = None | ) |
| RoundTowardNegative | ( | ctx = None | ) |
| RoundTowardPositive | ( | ctx = None | ) |
| RoundTowardZero | ( | ctx = None | ) |
| RTN | ( | ctx = None | ) |
| RTP | ( | ctx = None | ) |
| RTZ | ( | ctx = None | ) |
| Select | ( | a, | |
| * | args | ||
| ) |
Return a Z3 select array expression.
>>> a = Array('a', IntSort(), IntSort())
>>> i = Int('i')
>>> Select(a, i)
a[i]
>>> eq(Select(a, i), a[i])
True
Definition at line 4984 of file z3py.py.
| SeqFoldLeft | ( | f, | |
| a, | |||
| s | |||
| ) |
Definition at line 11506 of file z3py.py.
| SeqFoldLeftI | ( | f, | |
| i, | |||
| a, | |||
| s | |||
| ) |
Definition at line 11512 of file z3py.py.
| SeqMap | ( | f, | |
| s | |||
| ) |
Map function 'f' over sequence 's'
Definition at line 11492 of file z3py.py.
| SeqMapI | ( | f, | |
| i, | |||
| s | |||
| ) |
Map function 'f' over sequence 's' at index 'i'
Definition at line 11498 of file z3py.py.
| SeqSort | ( | s | ) |
Create a sequence sort over elements provided in the argument >>> s = SeqSort(IntSort()) >>> s == Unit(IntVal(1)).sort() True
Definition at line 11139 of file z3py.py.
| set_default_fp_sort | ( | ebits, | |
| sbits, | |||
ctx = None |
|||
| ) |
| set_default_rounding_mode | ( | rm, | |
ctx = None |
|||
| ) |
Definition at line 9678 of file z3py.py.
| set_option | ( | * | args, |
| ** | kws | ||
| ) |
| set_param | ( | * | args, |
| ** | kws | ||
| ) |
Set Z3 global (or module) parameters. >>> set_param(precision=10)
Definition at line 298 of file z3py.py.
Referenced by set_option().
| SetAdd | ( | s, | |
| e | |||
| ) |
Add element e to set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetAdd(a, 1)
Store(a, 1, True)
Definition at line 5136 of file z3py.py.
| SetComplement | ( | s | ) |
The complement of set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetComplement(a)
complement(a)
Definition at line 5158 of file z3py.py.
| SetDel | ( | s, | |
| e | |||
| ) |
Remove element e to set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetDel(a, 1)
Store(a, 1, False)
Definition at line 5147 of file z3py.py.
| SetDifference | ( | a, | |
| b | |||
| ) |
The set difference of a and b
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetDifference(a, b)
setminus(a, b)
Definition at line 5168 of file z3py.py.
| SetIntersect | ( | * | args | ) |
Take the union of sets
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetIntersect(a, b)
intersection(a, b)
Definition at line 5123 of file z3py.py.
| SetSort | ( | s | ) |
| SetUnion | ( | * | args | ) |
Take the union of sets
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetUnion(a, b)
union(a, b)
Definition at line 5110 of file z3py.py.
| SignExt | ( | n, | |
| a | |||
| ) |
Return a bit-vector expression with `n` extra sign-bits.
>>> x = BitVec('x', 16)
>>> n = SignExt(8, x)
>>> n.size()
24
>>> n
SignExt(8, x)
>>> n.sort()
BitVec(24)
>>> v0 = BitVecVal(2, 2)
>>> v0
2
>>> v0.size()
2
>>> v = simplify(SignExt(6, v0))
>>> v
254
>>> v.size()
8
>>> print("%.x" % v.as_long())
fe
Definition at line 4540 of file z3py.py.
| SimpleSolver | ( | ctx = None, |
|
logFile = None |
|||
| ) |
Return a simple general purpose solver with limited amount of preprocessing.
>>> s = SimpleSolver()
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.check()
sat
Definition at line 7708 of file z3py.py.
| simplify | ( | a, | |
| * | arguments, | ||
| ** | keywords | ||
| ) |
Utils.
Simplify the expression `a` using the given options.
This function has many options. Use `help_simplify` to obtain the complete list.
>>> x = Int('x')
>>> y = Int('y')
>>> simplify(x + 1 + y + x + 1)
2 + 2*x + y
>>> simplify((x + 1)*(y + 1), som=True)
1 + x + y + x*y
>>> simplify(Distinct(x, y, 1), blast_distinct=True)
And(Not(x == y), Not(x == 1), Not(y == 1))
>>> simplify(And(x == 0, y == 1), elim_and=True)
Not(Or(Not(x == 0), Not(y == 1)))
Definition at line 9135 of file z3py.py.
| simplify_param_descrs | ( | ) |
Return the set of parameter descriptions for Z3 `simplify` procedure.
Definition at line 9165 of file z3py.py.
| solve | ( | * | args, |
| ** | keywords | ||
| ) |
Solve the constraints `*args`.
This is a simple function for creating demonstrations. It creates a solver,
configure it using the options in `keywords`, adds the constraints
in `args`, and invokes check.
>>> a = Int('a')
>>> solve(a > 0, a < 2)
[a = 1]
Definition at line 9397 of file z3py.py.
| solve_using | ( | s, | |
| * | args, | ||
| ** | keywords | ||
| ) |
Solve the constraints `*args` using solver `s`. This is a simple function for creating demonstrations. It is similar to `solve`, but it uses the given solver `s`. It configures solver `s` using the options in `keywords`, adds the constraints in `args`, and invokes check.
Definition at line 9427 of file z3py.py.
| SolverFor | ( | logic, | |
ctx = None, |
|||
logFile = None |
|||
| ) |
Create a solver customized for the given logic.
The parameter `logic` is a string. It should be contains
the name of a SMT-LIB logic.
See http://www.smtlib.org/ for the name of all available logics.
>>> s = SolverFor("QF_LIA")
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.add(x < 2)
>>> s.check()
sat
>>> s.model()
[x = 1]
Definition at line 7687 of file z3py.py.
| Sqrt | ( | a, | |
ctx = None |
|||
| ) |
Return a Z3 expression which represents the square root of a.
>>> x = Real('x')
>>> Sqrt(x)
x**(1/2)
Definition at line 3560 of file z3py.py.
| SRem | ( | a, | |
| b | |||
| ) |
Create the Z3 expression signed remainder.
Use the operator % for signed modulus, and URem() for unsigned remainder.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> SRem(x, y)
SRem(x, y)
>>> SRem(x, y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> SRem(x, y).sexpr()
'(bvsrem x y)'
Definition at line 4455 of file z3py.py.
| Star | ( | re | ) |
Create the regular expression accepting zero or more repetitions of argument.
>>> re = Star(Re("a"))
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("ab", re)))
False
>>> print(simplify(InRe("", re)))
True
Definition at line 11680 of file z3py.py.
| Store | ( | a, | |
| * | args | ||
| ) |
Return a Z3 store array expression.
>>> a = Array('a', IntSort(), IntSort())
>>> i, v = Ints('i v')
>>> s = Store(a, i, v)
>>> s.sort()
Array(Int, Int)
>>> prove(s[i] == v)
proved
>>> j = Int('j')
>>> prove(Implies(i != j, s[j] == a[j]))
proved
Definition at line 4967 of file z3py.py.
Referenced by ModelRef.get_interp().
| StrFromCode | ( | c | ) |
| String | ( | name, | |
ctx = None |
|||
| ) |
Return a string constant named `name`. If `ctx=None`, then the global context is used.
>>> x = String('x')
Definition at line 11305 of file z3py.py.
| Strings | ( | names, | |
ctx = None |
|||
| ) |
Return a tuple of String constants.
Definition at line 11314 of file z3py.py.
| StringSort | ( | ctx = None | ) |
| StringVal | ( | s, | |
ctx = None |
|||
| ) |
create a string expression
Definition at line 11298 of file z3py.py.
Referenced by _coerce_exprs(), _py2expr(), and Extract().
| StrToCode | ( | s | ) |
Convert a unit length string to integer code
Definition at line 11542 of file z3py.py.
| StrToInt | ( | s | ) |
Convert string expression to integer
>>> a = StrToInt("1")
>>> simplify(1 == a)
True
>>> b = StrToInt("2")
>>> simplify(1 == b)
False
>>> c = StrToInt(IntToStr(2))
>>> simplify(1 == c)
False
Definition at line 11519 of file z3py.py.
| SubSeq | ( | s, | |
| offset, | |||
| length | |||
| ) |
Extract substring or subsequence starting at offset.
This is a convenience function that redirects to Extract(s, offset, length).
>>> s = StringVal("hello world")
>>> SubSeq(s, 0, 5) # Extract "hello"
str.substr("hello world", 0, 5)
>>> simplify(SubSeq(StringVal("testing"), 2, 4))
"stin"
Definition at line 11336 of file z3py.py.
| substitute | ( | t, | |
| * | m | ||
| ) |
Apply substitution m on t, m is a list of pairs of the form (from, to).
Every occurrence in t of from is replaced with to.
>>> x = Int('x')
>>> y = Int('y')
>>> substitute(x + 1, (x, y + 1))
y + 1 + 1
>>> f = Function('f', IntSort(), IntSort())
>>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
1 + 1
Definition at line 9170 of file z3py.py.
| substitute_funs | ( | t, | |
| * | m | ||
| ) |
Apply substitution m on t, m is a list of pairs of a function and expression (from, to) Every occurrence in to of the function from is replaced with the expression to. The expression to can have free variables, that refer to the arguments of from. For examples, see
Definition at line 9223 of file z3py.py.
| substitute_vars | ( | t, | |
| * | m | ||
| ) |
Substitute the free variables in t with the expression in m.
>>> v0 = Var(0, IntSort())
>>> v1 = Var(1, IntSort())
>>> x = Int('x')
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> # replace v0 with x+1 and v1 with x
>>> substitute_vars(f(v0, v1), x + 1, x)
f(x + 1, x)
Definition at line 9203 of file z3py.py.
| SubString | ( | s, | |
| offset, | |||
| length | |||
| ) |
Extract substring or subsequence starting at offset.
This is a convenience function that redirects to Extract(s, offset, length).
>>> s = StringVal("hello world")
>>> SubString(s, 6, 5) # Extract "world"
str.substr("hello world", 6, 5)
>>> simplify(SubString(StringVal("hello"), 1, 3))
"ell"
Definition at line 11322 of file z3py.py.
| SuffixOf | ( | a, | |
| b | |||
| ) |
Check if 'a' is a suffix of 'b'
>>> s1 = SuffixOf("ab", "abc")
>>> simplify(s1)
False
>>> s2 = SuffixOf("bc", "abc")
>>> simplify(s2)
True
Definition at line 11405 of file z3py.py.
| Sum | ( | * | args | ) |
Create the sum of the Z3 expressions.
>>> a, b, c = Ints('a b c')
>>> Sum(a, b, c)
a + b + c
>>> Sum([a, b, c])
a + b + c
>>> A = IntVector('a', 5)
>>> Sum(A)
a__0 + a__1 + a__2 + a__3 + a__4
Definition at line 9245 of file z3py.py.
| tactic_description | ( | name, | |
ctx = None |
|||
| ) |
Return a short description for the tactic named `name`.
>>> d = tactic_description('simplify')
Definition at line 8824 of file z3py.py.
| tactics | ( | ctx = None | ) |
Return a list of all available tactics in Z3.
>>> l = tactics()
>>> l.count('simplify') == 1
True
Definition at line 8813 of file z3py.py.
| Then | ( | * | ts, |
| ** | ks | ||
| ) |
Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).
>>> x, y = Ints('x y')
>>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
>>> t(And(x == 0, y > x + 1))
[[Not(y <= 1)]]
>>> t(And(x == 0, y > x + 1)).as_expr()
Not(y <= 1)
Definition at line 8681 of file z3py.py.
| to_Ast | ( | ptr | ) |
| to_AstVectorObj | ( | ptr | ) |
Definition at line 11774 of file z3py.py.
| to_ContextObj | ( | ptr | ) |
| to_symbol | ( | s, | |
ctx = None |
|||
| ) |
Convert an integer or string into a Z3 symbol.
Definition at line 132 of file z3py.py.
Referenced by _mk_quantifier(), Array(), BitVec(), Bool(), Const(), CreateDatatypes(), DatatypeSort(), DeclareSort(), DeclareTypeVar(), EnumSort(), Function(), ParamDescrsRef.get_documentation(), ParamDescrsRef.get_kind(), Int(), Real(), RecFunction(), and ParamsRef.set().
| ToInt | ( | a | ) |
Return the Z3 expression ToInt(a).
>>> x = Real('x')
>>> x.sort()
Real
>>> n = ToInt(x)
>>> n
ToInt(x)
>>> n.sort()
Int
Definition at line 3525 of file z3py.py.
| ToReal | ( | a | ) |
Return the Z3 expression ToReal(a).
>>> x = Int('x')
>>> x.sort()
Int
>>> n = ToReal(x)
>>> n
ToReal(x)
>>> n.sort()
Real
Definition at line 3505 of file z3py.py.
| TransitiveClosure | ( | f | ) |
Given a binary relation R, such that the two arguments have the same sort create the transitive closure relation R+. The transitive closure R+ is a new relation.
Definition at line 11757 of file z3py.py.
| TreeOrder | ( | a, | |
| index | |||
| ) |
| TryFor | ( | t, | |
| ms, | |||
ctx = None |
|||
| ) |
Return a tactic that applies `t` to a given goal for `ms` milliseconds. If `t` does not terminate in `ms` milliseconds, then it fails.
Definition at line 8804 of file z3py.py.
| TupleSort | ( | name, | |
| sorts, | |||
ctx = None |
|||
| ) |
Create a named tuple sort base on a set of underlying sorts
Example:
>>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
Definition at line 5579 of file z3py.py.
| UDiv | ( | a, | |
| b | |||
| ) |
Create the Z3 expression (unsigned) division `self / other`.
Use the operator / for signed division.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> UDiv(x, y)
UDiv(x, y)
>>> UDiv(x, y).sort()
BitVec(32)
>>> (x / y).sexpr()
'(bvsdiv x y)'
>>> UDiv(x, y).sexpr()
'(bvudiv x y)'
Definition at line 4413 of file z3py.py.
| UGE | ( | a, | |
| b | |||
| ) |
Create the Z3 expression (unsigned) `other >= self`.
Use the operator >= for signed greater than or equal to.
>>> x, y = BitVecs('x y', 32)
>>> UGE(x, y)
UGE(x, y)
>>> (x >= y).sexpr()
'(bvsge x y)'
>>> UGE(x, y).sexpr()
'(bvuge x y)'
Definition at line 4377 of file z3py.py.
| UGT | ( | a, | |
| b | |||
| ) |
Create the Z3 expression (unsigned) `other > self`.
Use the operator > for signed greater than.
>>> x, y = BitVecs('x y', 32)
>>> UGT(x, y)
UGT(x, y)
>>> (x > y).sexpr()
'(bvsgt x y)'
>>> UGT(x, y).sexpr()
'(bvugt x y)'
Definition at line 4395 of file z3py.py.
| ULE | ( | a, | |
| b | |||
| ) |
Create the Z3 expression (unsigned) `other <= self`.
Use the operator <= for signed less than or equal to.
>>> x, y = BitVecs('x y', 32)
>>> ULE(x, y)
ULE(x, y)
>>> (x <= y).sexpr()
'(bvsle x y)'
>>> ULE(x, y).sexpr()
'(bvule x y)'
Definition at line 4341 of file z3py.py.
| ULT | ( | a, | |
| b | |||
| ) |
Create the Z3 expression (unsigned) `other < self`.
Use the operator < for signed less than.
>>> x, y = BitVecs('x y', 32)
>>> ULT(x, y)
ULT(x, y)
>>> (x < y).sexpr()
'(bvslt x y)'
>>> ULT(x, y).sexpr()
'(bvult x y)'
Definition at line 4359 of file z3py.py.
| Union | ( | * | args | ) |
Create union of regular expressions.
>>> re = Union(Re("a"), Re("b"), Re("c"))
>>> print (simplify(InRe("d", re)))
False
Definition at line 11607 of file z3py.py.
| Unit | ( | a | ) |
| Update | ( | a, | |
| * | args | ||
| ) |
Return a Z3 store array expression.
>>> a = Array('a', IntSort(), IntSort())
>>> i, v = Ints('i v')
>>> s = Update(a, i, v)
>>> s.sort()
Array(Int, Int)
>>> prove(s[i] == v)
proved
>>> j = Int('j')
>>> prove(Implies(i != j, s[j] == a[j]))
proved
Definition at line 4924 of file z3py.py.
Referenced by Store().
| URem | ( | a, | |
| b | |||
| ) |
Create the Z3 expression (unsigned) remainder `self % other`.
Use the operator % for signed modulus, and SRem() for signed remainder.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> URem(x, y)
URem(x, y)
>>> URem(x, y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> URem(x, y).sexpr()
'(bvurem x y)'
Definition at line 4434 of file z3py.py.
| user_prop_binding | ( | ctx, | |
| cb, | |||
| q_ref, | |||
| inst_ref | |||
| ) |
Definition at line 11927 of file z3py.py.
| user_prop_created | ( | ctx, | |
| cb, | |||
| id | |||
| ) |
| user_prop_decide | ( | ctx, | |
| cb, | |||
| t_ref, | |||
| idx, | |||
| phase | |||
| ) |
| user_prop_diseq | ( | ctx, | |
| cb, | |||
| x, | |||
| y | |||
| ) |
Definition at line 11910 of file z3py.py.
| user_prop_eq | ( | ctx, | |
| cb, | |||
| x, | |||
| y | |||
| ) |
| user_prop_final | ( | ctx, | |
| cb | |||
| ) |
| user_prop_fixed | ( | ctx, | |
| cb, | |||
| id, | |||
| value | |||
| ) |
Definition at line 11876 of file z3py.py.
| user_prop_fresh | ( | ctx, | |
| _new_ctx | |||
| ) |
Definition at line 11862 of file z3py.py.
| user_prop_pop | ( | ctx, | |
| cb, | |||
| num_scopes | |||
| ) |
| user_prop_push | ( | ctx, | |
| cb | |||
| ) |
Create a Z3 free variable. Free variables are used to create quantified formulas. A free variable with index n is bound when it occurs within the scope of n+1 quantified declarations. >>> Var(0, IntSort()) Var(0) >>> eq(Var(0, IntSort()), Var(0, BoolSort())) False
Definition at line 1575 of file z3py.py.
Referenced by RealVar().
| When | ( | p, | |
| t, | |||
ctx = None |
|||
| ) |
Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
Otherwise, it returns the input goal unmodified.
>>> t = When(Probe('size') > 2, Tactic('simplify'))
>>> x, y = Ints('x y')
>>> g = Goal()
>>> g.add(x > 0)
>>> g.add(y > 0)
>>> t(g)
[[x > 0, y > 0]]
>>> g.add(x == y + 1)
>>> t(g)
[[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 9098 of file z3py.py.
| With | ( | t, | |
| * | args, | ||
| ** | keys | ||
| ) |
Return a tactic that applies tactic `t` using the given configuration options.
>>> x, y = Ints('x y')
>>> t = With(Tactic('simplify'), som=True)
>>> t((x + 1)*(y + 2) == 0)
[[2*x + y + x*y == -2]]
Definition at line 8755 of file z3py.py.
| WithParams | ( | t, | |
| p | |||
| ) |
Return a tactic that applies tactic `t` using the given configuration options.
>>> x, y = Ints('x y')
>>> p = ParamsRef()
>>> p.set("som", True)
>>> t = WithParams(Tactic('simplify'), p)
>>> t((x + 1)*(y + 2) == 0)
[[2*x + y + x*y == -2]]
Definition at line 8769 of file z3py.py.
| Xor | ( | a, | |
| b, | |||
ctx = None |
|||
| ) |
Create a Z3 Xor expression.
>>> p, q = Bools('p q')
>>> Xor(p, q)
Xor(p, q)
>>> simplify(Xor(p, q))
Not(p == q)
Definition at line 1932 of file z3py.py.
Referenced by BoolRef.__xor__().
| z3_debug | ( | ) |
Definition at line 70 of file z3py.py.
Referenced by QuantifierRef.__getitem__(), ModelRef.__getitem__(), Context.__init__(), Goal.__init__(), ArithRef.__mod__(), ArithRef.__rmod__(), _check_bv_args(), _coerce_expr_merge(), _ctx_from_ast_arg_list(), _mk_bin(), _mk_quantifier(), _py2expr(), _to_sort_ref(), DatatypeSortRef.accessor(), And(), ExprRef.arg(), args2params(), ArraySort(), IntNumRef.as_long(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), SortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), Concat(), Const(), DatatypeSortRef.constructor(), Goal.convert_model(), CreateDatatypes(), ExprRef.decl(), Datatype.declare(), Datatype.declare_core(), Default(), Distinct(), EnumSort(), eq(), AstRef.eq(), Ext(), Extract(), FreshConst(), FreshFunction(), Function(), get_as_array_func(), ModelRef.get_interp(), get_map_func(), ModelRef.get_universe(), get_var_index(), If(), IsInt(), K(), ExprRef.kind(), Map(), MultiPattern(), QuantifierRef.no_pattern(), ExprRef.num_args(), Or(), QuantifierRef.pattern(), RatVal(), RecFunction(), DatatypeSortRef.recognizer(), RepeatBitVec(), Select(), ParamsRef.set(), set_param(), SignExt(), ToInt(), ToReal(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Update(), ExprRef.update(), DatatypeRef.update_field(), Var(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and ZeroExt().
| z3_error_handler | ( | c, | |
| e | |||
| ) |
| ZeroExt | ( | n, | |
| a | |||
| ) |
Return a bit-vector expression with `n` extra zero-bits.
>>> x = BitVec('x', 16)
>>> n = ZeroExt(8, x)
>>> n.size()
24
>>> n
ZeroExt(8, x)
>>> n.sort()
BitVec(24)
>>> v0 = BitVecVal(2, 2)
>>> v0
2
>>> v0.size()
2
>>> v = simplify(ZeroExt(6, v0))
>>> v
2
>>> v.size()
8
Definition at line 4570 of file z3py.py.
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
| sat = CheckSatResult(Z3_L_TRUE) |
| unknown = CheckSatResult(Z3_L_UNDEF) |
| unsat = CheckSatResult(Z3_L_FALSE) |