Z3
Public Member Functions | Protected Member Functions | Properties
Expr Class Reference

Expressions are terms. More...

+ Inheritance diagram for Expr:

Public Member Functions

Expr Simplify (Params p=null)
 Returns a simplified version of the expression. More...
 
Expr Arg (uint i)
 The i'th argument of the expression. More...
 
void Update (Expr[] args)
 Update the arguments of the expression using the arguments args The number of new arguments should coincide with the current number of arguments. More...
 
Expr Substitute (Expr[] from, Expr[] to)
 Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs. More...
 
Expr Substitute (Expr from, Expr to)
 Substitute every occurrence of from in the expression with to. More...
 
Expr SubstituteVars (Expr[] to)
 Substitute the free variables in the expression with the expressions in to More...
 
new Expr Translate (Context ctx)
 Translates (copies) the term to the Context ctx . More...
 
Expr Dup ()
 Create a duplicate of expression. This feature is to allow extending the life-time of expressions that were passed down as arguments by the user propagator callbacks. By default the life-time of arguments to callbacks is within the callback only. More...
 
override string ToString ()
 Returns a string representation of the expression. More...
 
- Public Member Functions inherited from AST
override bool Equals (object o)
 Object comparison. More...
 
virtual int CompareTo (object other)
 Object Comparison. More...
 
override int GetHashCode ()
 The AST's hash code. More...
 
AST Translate (Context ctx)
 Translates (copies) the AST to the Context ctx . More...
 
override string ToString ()
 A string representation of the AST. More...
 
string SExpr ()
 A string representation of the AST in s-expression notation. More...
 
- Public Member Functions inherited from Z3Object
void Dispose ()
 Disposes of the underlying native Z3 object. More...
 

Protected Member Functions

 Expr (Context ctx, IntPtr obj)
 Constructor for Expr More...
 

Properties

FuncDecl FuncDecl [get]
 The function declaration of the function that is applied in this expression. More...
 
Z3_lbool BoolValue [get]
 Indicates whether the expression is the true or false expression or something else (Z3_L_UNDEF). More...
 
uint NumArgs [get]
 The number of arguments of the expression. More...
 
Expr[] Args [get]
 The arguments of the expression. More...
 
bool IsNumeral [get]
 Indicates whether the term is a numeral More...
 
bool IsWellSorted [get]
 Indicates whether the term is well-sorted. More...
 
Sort Sort [get]
 The Sort of the term. More...
 
bool IsConst [get]
 Indicates whether the term represents a constant. More...
 
bool IsIntNum [get]
 Indicates whether the term is an integer numeral. More...
 
bool IsRatNum [get]
 Indicates whether the term is a real numeral. More...
 
bool IsAlgebraicNumber [get]
 Indicates whether the term is an algebraic number More...
 
bool IsBool [get]
 Indicates whether the term has Boolean sort. More...
 
bool IsTrue [get]
 Indicates whether the term is the constant true. More...
 
bool IsFalse [get]
 Indicates whether the term is the constant false. More...
 
bool IsEq [get]
 Indicates whether the term is an equality predicate. More...
 
bool IsDistinct [get]
 Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct). More...
 
bool IsITE [get]
 Indicates whether the term is a ternary if-then-else term More...
 
bool IsAnd [get]
 Indicates whether the term is an n-ary conjunction More...
 
bool IsOr [get]
 Indicates whether the term is an n-ary disjunction More...
 
bool IsIff [get]
 Indicates whether the term is an if-and-only-if (Boolean equivalence, binary) More...
 
bool IsXor [get]
 Indicates whether the term is an exclusive or More...
 
bool IsNot [get]
 Indicates whether the term is a negation More...
 
bool IsImplies [get]
 Indicates whether the term is an implication More...
 
bool IsAtMost [get]
 Indicates whether the term is at-most More...
 
uint AtMostBound [get]
 Retrieve bound of at-most More...
 
bool IsAtLeast [get]
 Indicates whether the term is at-least More...
 
uint AtLeastBound [get]
 Retrieve bound of at-least More...
 
bool IsPbEq [get]
 Indicates whether the term is pbeq More...
 
bool IsPbLe [get]
 Indicates whether the term is pble More...
 
bool IsPbGe [get]
 Indicates whether the term is pbge More...
 
bool IsInt [get]
 Indicates whether the term is of integer sort. More...
 
bool IsReal [get]
 Indicates whether the term is of sort real. More...
 
bool IsArithmeticNumeral [get]
 Indicates whether the term is an arithmetic numeral. More...
 
bool IsLE [get]
 Indicates whether the term is a less-than-or-equal More...
 
bool IsGE [get]
 Indicates whether the term is a greater-than-or-equal More...
 
bool IsLT [get]
 Indicates whether the term is a less-than More...
 
bool IsGT [get]
 Indicates whether the term is a greater-than More...
 
bool IsAdd [get]
 Indicates whether the term is addition (binary) More...
 
bool IsSub [get]
 Indicates whether the term is subtraction (binary) More...
 
bool IsUMinus [get]
 Indicates whether the term is a unary minus More...
 
bool IsMul [get]
 Indicates whether the term is multiplication (binary) More...
 
bool IsDiv [get]
 Indicates whether the term is division (binary) More...
 
bool IsIDiv [get]
 Indicates whether the term is integer division (binary) More...
 
bool IsRemainder [get]
 Indicates whether the term is remainder (binary) More...
 
bool IsModulus [get]
 Indicates whether the term is modulus (binary) More...
 
bool IsIntToReal [get]
 Indicates whether the term is a coercion of integer to real (unary) More...
 
bool IsRealToInt [get]
 Indicates whether the term is a coercion of real to integer (unary) More...
 
bool IsRealIsInt [get]
 Indicates whether the term is a check that tests whether a real is integral (unary) More...
 
bool IsArray [get]
 Indicates whether the term is of an array sort. More...
 
bool IsStore [get]
 Indicates whether the term is an array store. More...
 
bool IsSelect [get]
 Indicates whether the term is an array select. More...
 
bool IsConstantArray [get]
 Indicates whether the term is a constant array. More...
 
bool IsDefaultArray [get]
 Indicates whether the term is a default array. More...
 
bool IsArrayMap [get]
 Indicates whether the term is an array map. More...
 
bool IsAsArray [get]
 Indicates whether the term is an as-array term. More...
 
bool IsSetUnion [get]
 Indicates whether the term is set union More...
 
bool IsSetIntersect [get]
 Indicates whether the term is set intersection More...
 
bool IsSetDifference [get]
 Indicates whether the term is set difference More...
 
bool IsSetComplement [get]
 Indicates whether the term is set complement More...
 
bool IsSetSubset [get]
 Indicates whether the term is set subset More...
 
bool IsBV [get]
 Indicates whether the terms is of bit-vector sort. More...
 
bool IsBVNumeral [get]
 Indicates whether the term is a bit-vector numeral More...
 
bool IsBVBitOne [get]
 Indicates whether the term is a one-bit bit-vector with value one More...
 
bool IsBVBitZero [get]
 Indicates whether the term is a one-bit bit-vector with value zero More...
 
bool IsBVUMinus [get]
 Indicates whether the term is a bit-vector unary minus More...
 
bool IsBVAdd [get]
 Indicates whether the term is a bit-vector addition (binary) More...
 
bool IsBVSub [get]
 Indicates whether the term is a bit-vector subtraction (binary) More...
 
bool IsBVMul [get]
 Indicates whether the term is a bit-vector multiplication (binary) More...
 
bool IsBVSDiv [get]
 Indicates whether the term is a bit-vector signed division (binary) More...
 
bool IsBVUDiv [get]
 Indicates whether the term is a bit-vector unsigned division (binary) More...
 
bool IsBVSRem [get]
 Indicates whether the term is a bit-vector signed remainder (binary) More...
 
bool IsBVURem [get]
 Indicates whether the term is a bit-vector unsigned remainder (binary) More...
 
bool IsBVSMod [get]
 Indicates whether the term is a bit-vector signed modulus More...
 
bool IsBVULE [get]
 Indicates whether the term is an unsigned bit-vector less-than-or-equal More...
 
bool IsBVSLE [get]
 Indicates whether the term is a signed bit-vector less-than-or-equal More...
 
bool IsBVUGE [get]
 Indicates whether the term is an unsigned bit-vector greater-than-or-equal More...
 
bool IsBVSGE [get]
 Indicates whether the term is a signed bit-vector greater-than-or-equal More...
 
bool IsBVULT [get]
 Indicates whether the term is an unsigned bit-vector less-than More...
 
bool IsBVSLT [get]
 Indicates whether the term is a signed bit-vector less-than More...
 
bool IsBVUGT [get]
 Indicates whether the term is an unsigned bit-vector greater-than More...
 
bool IsBVSGT [get]
 Indicates whether the term is a signed bit-vector greater-than More...
 
bool IsBVAND [get]
 Indicates whether the term is a bit-wise AND More...
 
bool IsBVOR [get]
 Indicates whether the term is a bit-wise OR More...
 
bool IsBVNOT [get]
 Indicates whether the term is a bit-wise NOT More...
 
bool IsBVXOR [get]
 Indicates whether the term is a bit-wise XOR More...
 
bool IsBVNAND [get]
 Indicates whether the term is a bit-wise NAND More...
 
bool IsBVNOR [get]
 Indicates whether the term is a bit-wise NOR More...
 
bool IsBVXNOR [get]
 Indicates whether the term is a bit-wise XNOR More...
 
bool IsBVConcat [get]
 Indicates whether the term is a bit-vector concatenation (binary) More...
 
bool IsBVSignExtension [get]
 Indicates whether the term is a bit-vector sign extension More...
 
bool IsBVZeroExtension [get]
 Indicates whether the term is a bit-vector zero extension More...
 
bool IsBVExtract [get]
 Indicates whether the term is a bit-vector extraction More...
 
bool IsBVRepeat [get]
 Indicates whether the term is a bit-vector repetition More...
 
bool IsBVReduceOR [get]
 Indicates whether the term is a bit-vector reduce OR More...
 
bool IsBVReduceAND [get]
 Indicates whether the term is a bit-vector reduce AND More...
 
bool IsBVComp [get]
 Indicates whether the term is a bit-vector comparison More...
 
bool IsBVShiftLeft [get]
 Indicates whether the term is a bit-vector shift left More...
 
bool IsBVShiftRightLogical [get]
 Indicates whether the term is a bit-vector logical shift right More...
 
bool IsBVShiftRightArithmetic [get]
 Indicates whether the term is a bit-vector arithmetic shift left More...
 
bool IsBVRotateLeft [get]
 Indicates whether the term is a bit-vector rotate left More...
 
bool IsBVRotateRight [get]
 Indicates whether the term is a bit-vector rotate right More...
 
bool IsBVRotateLeftExtended [get]
 Indicates whether the term is a bit-vector rotate left (extended) More...
 
bool IsBVRotateRightExtended [get]
 Indicates whether the term is a bit-vector rotate right (extended) More...
 
bool IsIntToBV [get]
 Indicates whether the term is a coercion from integer to bit-vector More...
 
bool IsBVToInt [get]
 Indicates whether the term is a coercion from bit-vector to integer More...
 
bool IsBVCarry [get]
 Indicates whether the term is a bit-vector carry More...
 
bool IsBVXOR3 [get]
 Indicates whether the term is a bit-vector ternary XOR More...
 
bool IsLabel [get]
 Indicates whether the term is a label (used by the Boogie Verification condition generator). More...
 
bool IsLabelLit [get]
 Indicates whether the term is a label literal (used by the Boogie Verification condition generator). More...
 
bool IsString [get]
 Check whether expression is a string constant. More...
 
string String [get]
 Retrieve string corresponding to string constant. More...
 
bool IsConcat [get]
 Check whether expression is a concatenation. More...
 
bool IsPrefix [get]
 Check whether expression is a prefix. More...
 
bool IsSuffix [get]
 Check whether expression is a suffix. More...
 
bool IsContains [get]
 Check whether expression is a contains. More...
 
bool IsExtract [get]
 Check whether expression is an extract. More...
 
bool IsReplace [get]
 Check whether expression is a replace. More...
 
bool IsAt [get]
 Check whether expression is an at. More...
 
bool IsLength [get]
 Check whether expression is a sequence length. More...
 
bool IsIndex [get]
 Check whether expression is a sequence index. More...
 
bool IsOEQ [get]
 Indicates whether the term is a binary equivalence modulo namings. More...
 
bool IsProofTrue [get]
 Indicates whether the term is a Proof for the expression 'true'. More...
 
bool IsProofAsserted [get]
 Indicates whether the term is a proof for a fact asserted by the user. More...
 
bool IsProofGoal [get]
 Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user. More...
 
bool IsProofModusPonens [get]
 Indicates whether the term is proof via modus ponens More...
 
bool IsProofReflexivity [get]
 Indicates whether the term is a proof for (R t t), where R is a reflexive relation. More...
 
bool IsProofSymmetry [get]
 Indicates whether the term is proof by symmetricity of a relation More...
 
bool IsProofTransitivity [get]
 Indicates whether the term is a proof by transitivity of a relation More...
 
bool IsProofTransitivityStar [get]
 Indicates whether the term is a proof by condensed transitivity of a relation More...
 
bool IsProofMonotonicity [get]
 Indicates whether the term is a monotonicity proof object. More...
 
bool IsProofQuantIntro [get]
 Indicates whether the term is a quant-intro proof More...
 
bool IsProofDistributivity [get]
 Indicates whether the term is a distributivity proof object. More...
 
bool IsProofAndElimination [get]
 Indicates whether the term is a proof by elimination of AND More...
 
bool IsProofOrElimination [get]
 Indicates whether the term is a proof by elimination of not-or More...
 
bool IsProofRewrite [get]
 Indicates whether the term is a proof by rewriting More...
 
bool IsProofRewriteStar [get]
 Indicates whether the term is a proof by rewriting More...
 
bool IsProofPullQuant [get]
 Indicates whether the term is a proof for pulling quantifiers out. More...
 
bool IsProofPushQuant [get]
 Indicates whether the term is a proof for pushing quantifiers in. More...
 
bool IsProofElimUnusedVars [get]
 Indicates whether the term is a proof for elimination of unused variables. More...
 
bool IsProofDER [get]
 Indicates whether the term is a proof for destructive equality resolution More...
 
bool IsProofQuantInst [get]
 Indicates whether the term is a proof for quantifier instantiation More...
 
bool IsProofHypothesis [get]
 Indicates whether the term is a hypothesis marker. More...
 
bool IsProofLemma [get]
 Indicates whether the term is a proof by lemma More...
 
bool IsProofUnitResolution [get]
 Indicates whether the term is a proof by unit resolution More...
 
bool IsProofIFFTrue [get]
 Indicates whether the term is a proof by iff-true More...
 
bool IsProofIFFFalse [get]
 Indicates whether the term is a proof by iff-false More...
 
bool IsProofCommutativity [get]
 Indicates whether the term is a proof by commutativity More...
 
bool IsProofDefAxiom [get]
 Indicates whether the term is a proof for Tseitin-like axioms More...
 
bool IsProofDefIntro [get]
 Indicates whether the term is a proof for introduction of a name More...
 
bool IsProofApplyDef [get]
 Indicates whether the term is a proof for application of a definition More...
 
bool IsProofIFFOEQ [get]
 Indicates whether the term is a proof iff-oeq More...
 
bool IsProofNNFPos [get]
 Indicates whether the term is a proof for a positive NNF step More...
 
bool IsProofNNFNeg [get]
 Indicates whether the term is a proof for a negative NNF step More...
 
bool IsProofSkolemize [get]
 Indicates whether the term is a proof for a Skolemization step More...
 
bool IsProofModusPonensOEQ [get]
 Indicates whether the term is a proof by modus ponens for equi-satisfiability. More...
 
bool IsProofTheoryLemma [get]
 Indicates whether the term is a proof for theory lemma More...
 
bool IsRelation [get]
 Indicates whether the term is of relation sort. More...
 
bool IsRelationStore [get]
 Indicates whether the term is an relation store More...
 
bool IsEmptyRelation [get]
 Indicates whether the term is an empty relation More...
 
bool IsIsEmptyRelation [get]
 Indicates whether the term is a test for the emptiness of a relation More...
 
bool IsRelationalJoin [get]
 Indicates whether the term is a relational join More...
 
bool IsRelationUnion [get]
 Indicates whether the term is the union or convex hull of two relations. More...
 
bool IsRelationWiden [get]
 Indicates whether the term is the widening of two relations More...
 
bool IsRelationProject [get]
 Indicates whether the term is a projection of columns (provided as numbers in the parameters). More...
 
bool IsRelationFilter [get]
 Indicates whether the term is a relation filter More...
 
bool IsRelationNegationFilter [get]
 Indicates whether the term is an intersection of a relation with the negation of another. More...
 
bool IsRelationRename [get]
 Indicates whether the term is the renaming of a column in a relation More...
 
bool IsRelationComplement [get]
 Indicates whether the term is the complement of a relation More...
 
bool IsRelationSelect [get]
 Indicates whether the term is a relational select More...
 
bool IsRelationClone [get]
 Indicates whether the term is a relational clone (copy) More...
 
bool IsFiniteDomain [get]
 Indicates whether the term is of an array sort. More...
 
bool IsFiniteDomainLT [get]
 Indicates whether the term is a less than predicate over a finite domain. More...
 
bool IsFP [get]
 Indicates whether the terms is of floating-point sort. More...
 
bool IsFPRM [get]
 Indicates whether the terms is of floating-point rounding mode sort. More...
 
bool IsFPNumeral [get]
 Indicates whether the term is a floating-point numeral More...
 
bool IsFPRMNumeral [get]
 Indicates whether the term is a floating-point rounding mode numeral More...
 
bool IsFPRMRoundNearestTiesToEven [get]
 Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven More...
 
bool IsFPRMRoundNearestTiesToAway [get]
 Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway More...
 
bool IsFPRMRoundTowardNegative [get]
 Indicates whether the term is the floating-point rounding numeral roundTowardNegative More...
 
bool IsFPRMRoundTowardPositive [get]
 Indicates whether the term is the floating-point rounding numeral roundTowardPositive More...
 
bool IsFPRMRoundTowardZero [get]
 Indicates whether the term is the floating-point rounding numeral roundTowardZero More...
 
bool IsFPRMExprRNE [get]
 Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven More...
 
bool IsFPRMExprRNA [get]
 Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway More...
 
bool IsFPRMExprRTN [get]
 Indicates whether the term is the floating-point rounding numeral roundTowardNegative More...
 
bool IsFPRMExprRTP [get]
 Indicates whether the term is the floating-point rounding numeral roundTowardPositive More...
 
bool IsFPRMExprRTZ [get]
 Indicates whether the term is the floating-point rounding numeral roundTowardZero More...
 
bool IsFPRMExpr [get]
 Indicates whether the term is a floating-point rounding mode numeral More...
 
bool IsFPPlusInfinity [get]
 Indicates whether the term is a floating-point +oo More...
 
bool IsFPMinusInfinity [get]
 Indicates whether the term is a floating-point -oo More...
 
bool IsFPNaN [get]
 Indicates whether the term is a floating-point NaN More...
 
bool IsFPPlusZero [get]
 
bool IsFPMinusZero [get]
 Indicates whether the term is a floating-point -zero More...
 
bool IsFPAdd [get]
 Indicates whether the term is a floating-point addition term More...
 
bool IsFPSub [get]
 Indicates whether the term is a floating-point subtraction term More...
 
bool IsFPNeg [get]
 Indicates whether the term is a floating-point negation term More...
 
bool IsFPMul [get]
 Indicates whether the term is a floating-point multiplication term More...
 
bool IsFPDiv [get]
 Indicates whether the term is a floating-point division term More...
 
bool IsFPRem [get]
 Indicates whether the term is a floating-point remainder term More...
 
bool IsFPAbs [get]
 Indicates whether the term is a floating-point term absolute value term More...
 
bool IsFPMin [get]
 Indicates whether the term is a floating-point minimum term More...
 
bool IsFPMax [get]
 Indicates whether the term is a floating-point maximum term More...
 
bool IsFPFMA [get]
 Indicates whether the term is a floating-point fused multiply-add term More...
 
bool IsFPSqrt [get]
 Indicates whether the term is a floating-point square root term More...
 
bool IsFPRoundToIntegral [get]
 Indicates whether the term is a floating-point roundToIntegral term More...
 
bool IsFPEq [get]
 Indicates whether the term is a floating-point equality term More...
 
bool IsFPLt [get]
 Indicates whether the term is a floating-point less-than term More...
 
bool IsFPGt [get]
 Indicates whether the term is a floating-point greater-than term More...
 
bool IsFPLe [get]
 Indicates whether the term is a floating-point less-than or equal term More...
 
bool IsFPGe [get]
 Indicates whether the term is a floating-point greater-than or equal term More...
 
bool IsFPisNaN [get]
 Indicates whether the term is a floating-point isNaN predicate term More...
 
bool IsFPisInf [get]
 Indicates whether the term is a floating-point isInf predicate term More...
 
bool IsFPisZero [get]
 Indicates whether the term is a floating-point isZero predicate term More...
 
bool IsFPisNormal [get]
 Indicates whether the term is a floating-point isNormal term More...
 
bool IsFPisSubnormal [get]
 Indicates whether the term is a floating-point isSubnormal predicate term More...
 
bool IsFPisNegative [get]
 Indicates whether the term is a floating-point isNegative predicate term More...
 
bool IsFPisPositive [get]
 Indicates whether the term is a floating-point isPositive predicate term More...
 
bool IsFPFP [get]
 Indicates whether the term is a floating-point constructor term More...
 
bool IsFPToFp [get]
 Indicates whether the term is a floating-point conversion term More...
 
bool IsFPToFpUnsigned [get]
 Indicates whether the term is a floating-point conversion from unsigned bit-vector term More...
 
bool IsFPToUBV [get]
 Indicates whether the term is a floating-point conversion to unsigned bit-vector term More...
 
bool IsFPToSBV [get]
 Indicates whether the term is a floating-point conversion to signed bit-vector term More...
 
bool IsFPToReal [get]
 Indicates whether the term is a floating-point conversion to real term More...
 
bool IsFPToIEEEBV [get]
 Indicates whether the term is a floating-point conversion to IEEE-754 bit-vector term More...
 
uint Index [get]
 The de-Bruijn index of a bound variable. More...
 
- Properties inherited from AST
uint Id [get]
 A unique identifier for the AST (unique among all ASTs). More...
 
Z3_ast_kind ASTKind [get]
 The kind of the AST. More...
 
bool IsExpr [get]
 Indicates whether the AST is an Expr More...
 
bool IsApp [get]
 Indicates whether the AST is an application More...
 
bool IsVar [get]
 Indicates whether the AST is a BoundVariable More...
 
bool IsQuantifier [get]
 Indicates whether the AST is a Quantifier More...
 
bool IsSort [get]
 Indicates whether the AST is a Sort More...
 
bool IsFuncDecl [get]
 Indicates whether the AST is a FunctionDeclaration More...
 
- Properties inherited from Z3Object
Context Context [get]
 Access Context object More...
 

Additional Inherited Members

- Static Public Member Functions inherited from AST
static bool operator== (AST a, AST b)
 Comparison operator. More...
 
static bool operator!= (AST a, AST b)
 Comparison operator. More...
 

Detailed Description

Expressions are terms.

Definition at line 30 of file Expr.cs.

Constructor & Destructor Documentation

◆ Expr()

Expr ( Context  ctx,
IntPtr  obj 
)
inlineprotected

Constructor for Expr

Definition at line 1831 of file Expr.cs.

1831 : base(ctx, obj) { Debug.Assert(ctx != null); }

Member Function Documentation

◆ Arg()

Expr Arg ( uint  i)
inline

The i'th argument of the expression.

Definition at line 93 of file Expr.cs.

94  {
95  return Expr.Create(Context, Native.Z3_get_app_arg(Context.nCtx, NativeObject, i));
96  }
Expr(Context ctx, IntPtr obj)
Constructor for Expr
Definition: Expr.cs:1831
Context Context
Access Context object
Definition: Z3Object.cs:111

◆ Dup()

Expr Dup ( )
inline

Create a duplicate of expression. This feature is to allow extending the life-time of expressions that were passed down as arguments by the user propagator callbacks. By default the life-time of arguments to callbacks is within the callback only.

Definition at line 178 of file Expr.cs.

178  {
179  return Expr.Create(Context, NativeObject);
180  }

◆ Simplify()

Expr Simplify ( Params  p = null)
inline

Returns a simplified version of the expression.

Parameters
pA set of parameters to configure the simplifier
See also
Context.SimplifyHelp

Definition at line 37 of file Expr.cs.

38  {
39 
40  if (p == null)
41  return Expr.Create(Context, Native.Z3_simplify(Context.nCtx, NativeObject));
42  else
43  return Expr.Create(Context, Native.Z3_simplify_ex(Context.nCtx, NativeObject, p.NativeObject));
44  }

◆ Substitute() [1/2]

Expr Substitute ( Expr  from,
Expr  to 
)
inline

Substitute every occurrence of from in the expression with to.

See also
Substitute(Expr[],Expr[])

Definition at line 139 of file Expr.cs.

140  {
141  Debug.Assert(from != null);
142  Debug.Assert(to != null);
143 
144  return Substitute(new Expr[] { from }, new Expr[] { to });
145  }
Expr Substitute(Expr[] from, Expr[] to)
Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs.
Definition: Expr.cs:121

◆ Substitute() [2/2]

Expr Substitute ( Expr[]  from,
Expr[]  to 
)
inline

Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs.

The result is the new expression. The arrays from and to must have size num_exprs. For every i smaller than num_exprs, we must have that sort of from[i] must be equal to sort of to[i].

Definition at line 121 of file Expr.cs.

122  {
123  Debug.Assert(from != null);
124  Debug.Assert(to != null);
125  Debug.Assert(from.All(f => f != null));
126  Debug.Assert(to.All(t => t != null));
127 
128  Context.CheckContextMatch<Expr>(from);
129  Context.CheckContextMatch<Expr>(to);
130  if (from.Length != to.Length)
131  throw new Z3Exception("Argument sizes do not match");
132  return Expr.Create(Context, Native.Z3_substitute(Context.nCtx, NativeObject, (uint)from.Length, Expr.ArrayToNative(from), Expr.ArrayToNative(to)));
133  }

Referenced by Expr.Substitute().

◆ SubstituteVars()

Expr SubstituteVars ( Expr[]  to)
inline

Substitute the free variables in the expression with the expressions in to

For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i].

Definition at line 153 of file Expr.cs.

154  {
155  Debug.Assert(to != null);
156  Debug.Assert(to.All(t => t != null));
157 
158  Context.CheckContextMatch<Expr>(to);
159  return Expr.Create(Context, Native.Z3_substitute_vars(Context.nCtx, NativeObject, (uint)to.Length, Expr.ArrayToNative(to)));
160  }

◆ ToString()

override string ToString ( )
inline

Returns a string representation of the expression.

Definition at line 185 of file Expr.cs.

186  {
187  return base.ToString();
188  }

◆ Translate()

new Expr Translate ( Context  ctx)
inline

Translates (copies) the term to the Context ctx .

Parameters
ctxA context
Returns
A copy of the term which is associated with ctx

Definition at line 167 of file Expr.cs.

168  {
169  return (Expr)base.Translate(ctx);
170  }

Referenced by Expr.Translate().

◆ Update()

void Update ( Expr[]  args)
inline

Update the arguments of the expression using the arguments args The number of new arguments should coincide with the current number of arguments.

Definition at line 102 of file Expr.cs.

103  {
104  Debug.Assert(args != null);
105  Debug.Assert(args.All(a => a != null));
106 
107  Context.CheckContextMatch<Expr>(args);
108  if (IsApp && args.Length != NumArgs)
109  throw new Z3Exception("Number of arguments does not match");
110  NativeObject = Native.Z3_update_term(Context.nCtx, NativeObject, (uint)args.Length, Expr.ArrayToNative(args));
111  }
bool IsApp
Indicates whether the AST is an application
Definition: AST.cs:154
uint NumArgs
The number of arguments of the expression.
Definition: Expr.cs:70

Property Documentation

◆ Args

Expr [] Args
get

The arguments of the expression.

Definition at line 77 of file Expr.cs.

78  {
79  get
80  {
81 
82  uint n = NumArgs;
83  Expr[] res = new Expr[n];
84  for (uint i = 0; i < n; i++)
85  res[i] = Expr.Create(Context, Native.Z3_get_app_arg(Context.nCtx, NativeObject, i));
86  return res;
87  }
88  }

◆ AtLeastBound

uint AtLeastBound
get

Retrieve bound of at-least

Definition at line 348 of file Expr.cs.

348 { get { Debug.Assert(IsAtLeast); return (uint)FuncDecl.Parameters[0].Int; } }
bool IsAtLeast
Indicates whether the term is at-least
Definition: Expr.cs:343
FuncDecl FuncDecl
The function declaration of the function that is applied in this expression.
Definition: Expr.cs:50
int Int
The int value of the parameter.
Definition: FuncDecl.cs:219
Parameter[] Parameters
The parameters of the function declaration
Definition: FuncDecl.cs:164

◆ AtMostBound

uint AtMostBound
get

Retrieve bound of at-most

Definition at line 338 of file Expr.cs.

338 { get { Debug.Assert(IsAtMost); return (uint)FuncDecl.Parameters[0].Int; } }
bool IsAtMost
Indicates whether the term is at-most
Definition: Expr.cs:333

◆ BoolValue

Z3_lbool BoolValue
get

Indicates whether the expression is the true or false expression or something else (Z3_L_UNDEF).

Definition at line 61 of file Expr.cs.

62  {
63  get { return (Z3_lbool)Native.Z3_get_bool_value(Context.nCtx, NativeObject); }
64  }
Z3_lbool
Lifted Boolean type: false, undefined, true.
Definition: z3_api.h:61

◆ FuncDecl

The function declaration of the function that is applied in this expression.

Definition at line 49 of file Expr.cs.

50  {
51  get
52  {
53  return new FuncDecl(Context, Native.Z3_get_app_decl(Context.nCtx, NativeObject));
54  }
55  }

Referenced by Model.ConstInterp().

◆ Index

uint Index
get

The de-Bruijn index of a bound variable.

Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain the meaning of de-Bruijn indices by indicating the compilation process from non-de-Bruijn formulas to de-Bruijn format.

abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
abs1(x, x, n) = b_n
abs1(y, x, n) = y
abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
expr forall(expr const &x, expr const &b)
Definition: z3++.h:2325
expr abs(expr const &a)
Definition: z3++.h:1995

The last line is significant: the index of a bound variable is different depending on the scope in which it appears. The deeper x appears, the higher is its index.

Definition at line 1815 of file Expr.cs.

1816  {
1817  get
1818  {
1819  if (!IsVar)
1820  throw new Z3Exception("Term is not a bound variable.");
1821 
1822  return Native.Z3_get_index_value(Context.nCtx, NativeObject);
1823  }
1824  }
bool IsVar
Indicates whether the AST is a BoundVariable
Definition: AST.cs:162

◆ IsAdd

bool IsAdd
get

Indicates whether the term is addition (binary)

Definition at line 412 of file Expr.cs.

412 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ADD; } }
Z3_decl_kind DeclKind
The kind of the function declaration.
Definition: FuncDecl.cs:137
Z3_decl_kind
The different kinds of interpreted function kinds.
Definition: z3_api.h:963

◆ IsAlgebraicNumber

bool IsAlgebraicNumber
get

Indicates whether the term is an algebraic number

Definition at line 252 of file Expr.cs.

253  {
254  get { return 0 != Native.Z3_is_algebraic_number(Context.nCtx, NativeObject); }
255  }

◆ IsAnd

bool IsAnd
get

Indicates whether the term is an n-ary conjunction

Definition at line 303 of file Expr.cs.

303 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AND; } }

◆ IsArithmeticNumeral

bool IsArithmeticNumeral
get

Indicates whether the term is an arithmetic numeral.

Definition at line 387 of file Expr.cs.

387 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ANUM; } }

◆ IsArray

bool IsArray
get

Indicates whether the term is of an array sort.

Definition at line 469 of file Expr.cs.

470  {
471  get
472  {
473  return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
474  (Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
475  == Z3_sort_kind.Z3_ARRAY_SORT);
476  }
477  }
Z3_sort_kind
The different kinds of Z3 types (See Z3_get_sort_kind).
Definition: z3_api.h:109

◆ IsArrayMap

bool IsArrayMap
get

Indicates whether the term is an array map.

It satisfies mapf[i] = f(a1[i],...,a_n[i]) for every i.

Definition at line 507 of file Expr.cs.

507 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_MAP; } }

◆ IsAsArray

bool IsAsArray
get

Indicates whether the term is an as-array term.

An as-array term is n array value that behaves as the function graph of the function passed as parameter.

Definition at line 514 of file Expr.cs.

514 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AS_ARRAY; } }

◆ IsAt

bool IsAt
get

Check whether expression is an at.

Returns
a Boolean

Definition at line 887 of file Expr.cs.

887 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_AT; } }

◆ IsAtLeast

bool IsAtLeast
get

Indicates whether the term is at-least

Definition at line 343 of file Expr.cs.

343 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_AT_LEAST; } }

◆ IsAtMost

bool IsAtMost
get

Indicates whether the term is at-most

Definition at line 333 of file Expr.cs.

333 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_AT_MOST; } }

◆ IsBool

bool IsBool
get

Indicates whether the term has Boolean sort.

Definition at line 264 of file Expr.cs.

265  {
266  get
267  {
268  return (IsExpr &&
269  Native.Z3_is_eq_sort(Context.nCtx,
270  Native.Z3_mk_bool_sort(Context.nCtx),
271  Native.Z3_get_sort(Context.nCtx, NativeObject)) != 0);
272  }
273  }
bool IsExpr
Indicates whether the AST is an Expr
Definition: AST.cs:136

◆ IsBV

bool IsBV
get

Indicates whether the terms is of bit-vector sort.

Definition at line 548 of file Expr.cs.

549  {
550  get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_BV_SORT; }
551  }

◆ IsBVAdd

bool IsBVAdd
get

Indicates whether the term is a bit-vector addition (binary)

Definition at line 576 of file Expr.cs.

576 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BADD; } }

◆ IsBVAND

bool IsBVAND
get

Indicates whether the term is a bit-wise AND

Definition at line 681 of file Expr.cs.

681 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BAND; } }

◆ IsBVBitOne

bool IsBVBitOne
get

Indicates whether the term is a one-bit bit-vector with value one

Definition at line 561 of file Expr.cs.

561 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT1; } }

◆ IsBVBitZero

bool IsBVBitZero
get

Indicates whether the term is a one-bit bit-vector with value zero

Definition at line 566 of file Expr.cs.

566 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT0; } }

◆ IsBVCarry

bool IsBVCarry
get

Indicates whether the term is a bit-vector carry

Compute the carry bit in a full-adder. The meaning is given by the equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))

Definition at line 809 of file Expr.cs.

809 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CARRY; } }

◆ IsBVComp

bool IsBVComp
get

Indicates whether the term is a bit-vector comparison

Definition at line 751 of file Expr.cs.

751 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BCOMP; } }

◆ IsBVConcat

bool IsBVConcat
get

Indicates whether the term is a bit-vector concatenation (binary)

Definition at line 716 of file Expr.cs.

716 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONCAT; } }

◆ IsBVExtract

bool IsBVExtract
get

Indicates whether the term is a bit-vector extraction

Definition at line 731 of file Expr.cs.

731 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXTRACT; } }

◆ IsBVMul

bool IsBVMul
get

Indicates whether the term is a bit-vector multiplication (binary)

Definition at line 586 of file Expr.cs.

586 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BMUL; } }

◆ IsBVNAND

bool IsBVNAND
get

Indicates whether the term is a bit-wise NAND

Definition at line 701 of file Expr.cs.

701 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNAND; } }

◆ IsBVNOR

bool IsBVNOR
get

Indicates whether the term is a bit-wise NOR

Definition at line 706 of file Expr.cs.

706 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOR; } }

◆ IsBVNOT

bool IsBVNOT
get

Indicates whether the term is a bit-wise NOT

Definition at line 691 of file Expr.cs.

691 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOT; } }

◆ IsBVNumeral

bool IsBVNumeral
get

Indicates whether the term is a bit-vector numeral

Definition at line 556 of file Expr.cs.

556 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNUM; } }

◆ IsBVOR

bool IsBVOR
get

Indicates whether the term is a bit-wise OR

Definition at line 686 of file Expr.cs.

686 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BOR; } }

◆ IsBVReduceAND

bool IsBVReduceAND
get

Indicates whether the term is a bit-vector reduce AND

Definition at line 746 of file Expr.cs.

746 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDAND; } }

◆ IsBVReduceOR

bool IsBVReduceOR
get

Indicates whether the term is a bit-vector reduce OR

Definition at line 741 of file Expr.cs.

741 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDOR; } }

◆ IsBVRepeat

bool IsBVRepeat
get

Indicates whether the term is a bit-vector repetition

Definition at line 736 of file Expr.cs.

736 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REPEAT; } }

◆ IsBVRotateLeft

bool IsBVRotateLeft
get

Indicates whether the term is a bit-vector rotate left

Definition at line 771 of file Expr.cs.

771 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_LEFT; } }

◆ IsBVRotateLeftExtended

bool IsBVRotateLeftExtended
get

Indicates whether the term is a bit-vector rotate left (extended)

Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.

Definition at line 782 of file Expr.cs.

782 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT; } }

◆ IsBVRotateRight

bool IsBVRotateRight
get

Indicates whether the term is a bit-vector rotate right

Definition at line 776 of file Expr.cs.

776 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_RIGHT; } }

◆ IsBVRotateRightExtended

bool IsBVRotateRightExtended
get

Indicates whether the term is a bit-vector rotate right (extended)

Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.

Definition at line 788 of file Expr.cs.

788 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT; } }

◆ IsBVSDiv

bool IsBVSDiv
get

Indicates whether the term is a bit-vector signed division (binary)

Definition at line 591 of file Expr.cs.

591 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV; } }

◆ IsBVSGE

bool IsBVSGE
get

Indicates whether the term is a signed bit-vector greater-than-or-equal

Definition at line 656 of file Expr.cs.

656 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGEQ; } }

◆ IsBVSGT

bool IsBVSGT
get

Indicates whether the term is a signed bit-vector greater-than

Definition at line 676 of file Expr.cs.

676 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGT; } }

◆ IsBVShiftLeft

bool IsBVShiftLeft
get

Indicates whether the term is a bit-vector shift left

Definition at line 756 of file Expr.cs.

756 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSHL; } }

◆ IsBVShiftRightArithmetic

bool IsBVShiftRightArithmetic
get

Indicates whether the term is a bit-vector arithmetic shift left

Definition at line 766 of file Expr.cs.

766 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BASHR; } }

◆ IsBVShiftRightLogical

bool IsBVShiftRightLogical
get

Indicates whether the term is a bit-vector logical shift right

Definition at line 761 of file Expr.cs.

761 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BLSHR; } }

◆ IsBVSignExtension

bool IsBVSignExtension
get

Indicates whether the term is a bit-vector sign extension

Definition at line 721 of file Expr.cs.

721 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SIGN_EXT; } }

◆ IsBVSLE

bool IsBVSLE
get

Indicates whether the term is a signed bit-vector less-than-or-equal

Definition at line 646 of file Expr.cs.

646 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLEQ; } }

◆ IsBVSLT

bool IsBVSLT
get

Indicates whether the term is a signed bit-vector less-than

Definition at line 666 of file Expr.cs.

666 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLT; } }

◆ IsBVSMod

bool IsBVSMod
get

Indicates whether the term is a bit-vector signed modulus

Definition at line 611 of file Expr.cs.

611 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD; } }

◆ IsBVSRem

bool IsBVSRem
get

Indicates whether the term is a bit-vector signed remainder (binary)

Definition at line 601 of file Expr.cs.

601 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM; } }

◆ IsBVSub

bool IsBVSub
get

Indicates whether the term is a bit-vector subtraction (binary)

Definition at line 581 of file Expr.cs.

581 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSUB; } }

◆ IsBVToInt

bool IsBVToInt
get

Indicates whether the term is a coercion from bit-vector to integer

This function is not supported by the decision procedures. Only the most rudimentary simplification rules are applied to this function.

Definition at line 802 of file Expr.cs.

802 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BV2INT; } }

◆ IsBVUDiv

bool IsBVUDiv
get

Indicates whether the term is a bit-vector unsigned division (binary)

Definition at line 596 of file Expr.cs.

596 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV; } }

◆ IsBVUGE

bool IsBVUGE
get

Indicates whether the term is an unsigned bit-vector greater-than-or-equal

Definition at line 651 of file Expr.cs.

651 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGEQ; } }

◆ IsBVUGT

bool IsBVUGT
get

Indicates whether the term is an unsigned bit-vector greater-than

Definition at line 671 of file Expr.cs.

671 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGT; } }

◆ IsBVULE

bool IsBVULE
get

Indicates whether the term is an unsigned bit-vector less-than-or-equal

Definition at line 641 of file Expr.cs.

641 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULEQ; } }

◆ IsBVULT

bool IsBVULT
get

Indicates whether the term is an unsigned bit-vector less-than

Definition at line 661 of file Expr.cs.

661 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULT; } }

◆ IsBVUMinus

bool IsBVUMinus
get

Indicates whether the term is a bit-vector unary minus

Definition at line 571 of file Expr.cs.

571 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNEG; } }

◆ IsBVURem

bool IsBVURem
get

Indicates whether the term is a bit-vector unsigned remainder (binary)

Definition at line 606 of file Expr.cs.

606 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM; } }

◆ IsBVXNOR

bool IsBVXNOR
get

Indicates whether the term is a bit-wise XNOR

Definition at line 711 of file Expr.cs.

711 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXNOR; } }

◆ IsBVXOR

bool IsBVXOR
get

Indicates whether the term is a bit-wise XOR

Definition at line 696 of file Expr.cs.

696 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXOR; } }

◆ IsBVXOR3

bool IsBVXOR3
get

Indicates whether the term is a bit-vector ternary XOR

The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)

Definition at line 815 of file Expr.cs.

815 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR3; } }

◆ IsBVZeroExtension

bool IsBVZeroExtension
get

Indicates whether the term is a bit-vector zero extension

Definition at line 726 of file Expr.cs.

726 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ZERO_EXT; } }

◆ IsConcat

bool IsConcat
get

Check whether expression is a concatenation.

Returns
a Boolean

Definition at line 851 of file Expr.cs.

851 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_CONCAT; } }

◆ IsConst

bool IsConst
get

Indicates whether the term represents a constant.

Definition at line 222 of file Expr.cs.

223  {
224  get { return IsApp && NumArgs == 0 && FuncDecl.DomainSize == 0; }
225  }
uint DomainSize
The size of the domain of the function declaration Arity
Definition: FuncDecl.cs:101

◆ IsConstantArray

bool IsConstantArray
get

Indicates whether the term is a constant array.

For example, select(const(v),i) = v holds for every v and i. The function is unary.

Definition at line 495 of file Expr.cs.

495 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONST_ARRAY; } }

◆ IsContains

bool IsContains
get

Check whether expression is a contains.

Returns
a Boolean

Definition at line 869 of file Expr.cs.

869 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_CONTAINS; } }

◆ IsDefaultArray

bool IsDefaultArray
get

Indicates whether the term is a default array.

For example default(const(v)) = v. The function is unary.

Definition at line 501 of file Expr.cs.

501 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT; } }

◆ IsDistinct

bool IsDistinct
get

Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct).

Definition at line 293 of file Expr.cs.

293 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DISTINCT; } }

◆ IsDiv

bool IsDiv
get

Indicates whether the term is division (binary)

Definition at line 432 of file Expr.cs.

432 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DIV; } }

◆ IsEmptyRelation

bool IsEmptyRelation
get

Indicates whether the term is an empty relation

Definition at line 1405 of file Expr.cs.

1405 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_EMPTY; } }

◆ IsEq

bool IsEq
get

Indicates whether the term is an equality predicate.

Definition at line 288 of file Expr.cs.

288 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EQ; } }

◆ IsExtract

bool IsExtract
get

Check whether expression is an extract.

Returns
a Boolean

Definition at line 875 of file Expr.cs.

875 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_EXTRACT; } }

◆ IsFalse

bool IsFalse
get

Indicates whether the term is the constant false.

Definition at line 283 of file Expr.cs.

283 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FALSE; } }

◆ IsFiniteDomain

bool IsFiniteDomain
get

Indicates whether the term is of an array sort.

Definition at line 1504 of file Expr.cs.

1505  {
1506  get
1507  {
1508  return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
1509  Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_FINITE_DOMAIN_SORT);
1510  }
1511  }

◆ IsFiniteDomainLT

bool IsFiniteDomainLT
get

Indicates whether the term is a less than predicate over a finite domain.

Definition at line 1516 of file Expr.cs.

1516 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FD_LT; } }

◆ IsFP

bool IsFP
get

Indicates whether the terms is of floating-point sort.

Definition at line 1523 of file Expr.cs.

1524  {
1525  get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_FLOATING_POINT_SORT; }
1526  }

◆ IsFPAbs

bool IsFPAbs
get

Indicates whether the term is a floating-point term absolute value term

Definition at line 1669 of file Expr.cs.

1669 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_ABS; } }

◆ IsFPAdd

bool IsFPAdd
get

Indicates whether the term is a floating-point addition term

Definition at line 1638 of file Expr.cs.

1638 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_ADD; } }

◆ IsFPDiv

bool IsFPDiv
get

Indicates whether the term is a floating-point division term

Definition at line 1659 of file Expr.cs.

1659 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_DIV; } }

◆ IsFPEq

bool IsFPEq
get

Indicates whether the term is a floating-point equality term

Definition at line 1699 of file Expr.cs.

1699 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_EQ; } }

◆ IsFPFMA

bool IsFPFMA
get

Indicates whether the term is a floating-point fused multiply-add term

Definition at line 1684 of file Expr.cs.

1684 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_FMA; } }

◆ IsFPFP

bool IsFPFP
get

Indicates whether the term is a floating-point constructor term

Definition at line 1759 of file Expr.cs.

1759 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_FP; } }

◆ IsFPGe

bool IsFPGe
get

Indicates whether the term is a floating-point greater-than or equal term

Definition at line 1719 of file Expr.cs.

1719 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_GE; } }

◆ IsFPGt

bool IsFPGt
get

Indicates whether the term is a floating-point greater-than term

Definition at line 1709 of file Expr.cs.

1709 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_GT; } }

◆ IsFPisInf

bool IsFPisInf
get

Indicates whether the term is a floating-point isInf predicate term

Definition at line 1729 of file Expr.cs.

1729 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_INF; } }

◆ IsFPisNaN

bool IsFPisNaN
get

Indicates whether the term is a floating-point isNaN predicate term

Definition at line 1724 of file Expr.cs.

1724 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NAN; } }

◆ IsFPisNegative

bool IsFPisNegative
get

Indicates whether the term is a floating-point isNegative predicate term

Definition at line 1749 of file Expr.cs.

1749 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NEGATIVE; } }

◆ IsFPisNormal

bool IsFPisNormal
get

Indicates whether the term is a floating-point isNormal term

Definition at line 1739 of file Expr.cs.

1739 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NORMAL; } }

◆ IsFPisPositive

bool IsFPisPositive
get

Indicates whether the term is a floating-point isPositive predicate term

Definition at line 1754 of file Expr.cs.

1754 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_POSITIVE; } }

◆ IsFPisSubnormal

bool IsFPisSubnormal
get

Indicates whether the term is a floating-point isSubnormal predicate term

Definition at line 1744 of file Expr.cs.

1744 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_SUBNORMAL; } }

◆ IsFPisZero

bool IsFPisZero
get

Indicates whether the term is a floating-point isZero predicate term

Definition at line 1734 of file Expr.cs.

1734 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_ZERO; } }

◆ IsFPLe

bool IsFPLe
get

Indicates whether the term is a floating-point less-than or equal term

Definition at line 1714 of file Expr.cs.

1714 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_LE; } }

◆ IsFPLt

bool IsFPLt
get

Indicates whether the term is a floating-point less-than term

Definition at line 1704 of file Expr.cs.

1704 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_LT; } }

◆ IsFPMax

bool IsFPMax
get

Indicates whether the term is a floating-point maximum term

Definition at line 1679 of file Expr.cs.

1679 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MAX; } }

◆ IsFPMin

bool IsFPMin
get

Indicates whether the term is a floating-point minimum term

Definition at line 1674 of file Expr.cs.

1674 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MIN; } }

◆ IsFPMinusInfinity

bool IsFPMinusInfinity
get

Indicates whether the term is a floating-point -oo

Definition at line 1618 of file Expr.cs.

1618 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MINUS_INF; } }

◆ IsFPMinusZero

bool IsFPMinusZero
get

Indicates whether the term is a floating-point -zero

Definition at line 1633 of file Expr.cs.

1633 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MINUS_ZERO; } }

◆ IsFPMul

bool IsFPMul
get

Indicates whether the term is a floating-point multiplication term

Definition at line 1654 of file Expr.cs.

1654 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MUL; } }

◆ IsFPNaN

bool IsFPNaN
get

Indicates whether the term is a floating-point NaN

Definition at line 1623 of file Expr.cs.

1623 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_NAN; } }

◆ IsFPNeg

bool IsFPNeg
get

Indicates whether the term is a floating-point negation term

Definition at line 1649 of file Expr.cs.

1649 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_NEG; } }

◆ IsFPNumeral

bool IsFPNumeral
get

Indicates whether the term is a floating-point numeral

Definition at line 1539 of file Expr.cs.

1539 { get { return IsFP && IsNumeral; } }
bool IsFP
Indicates whether the terms is of floating-point sort.
Definition: Expr.cs:1524
bool IsNumeral
Indicates whether the term is a numeral
Definition: Expr.cs:194

◆ IsFPPlusInfinity

bool IsFPPlusInfinity
get

Indicates whether the term is a floating-point +oo

Definition at line 1613 of file Expr.cs.

1613 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_PLUS_INF; } }

◆ IsFPPlusZero

bool IsFPPlusZero
get

Indicates whether the term is a floating-point +zero

Definition at line 1628 of file Expr.cs.

1628 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_PLUS_ZERO; } }

◆ IsFPRem

bool IsFPRem
get

Indicates whether the term is a floating-point remainder term

Definition at line 1664 of file Expr.cs.

1664 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_REM; } }

◆ IsFPRM

bool IsFPRM
get

Indicates whether the terms is of floating-point rounding mode sort.

Definition at line 1531 of file Expr.cs.

1532  {
1533  get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_ROUNDING_MODE_SORT; }
1534  }

◆ IsFPRMExpr

bool IsFPRMExpr
get

Indicates whether the term is a floating-point rounding mode numeral

Definition at line 1599 of file Expr.cs.

1599  {
1600  get {
1601  return IsApp &&
1602  (FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY||
1603  FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN ||
1604  FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE ||
1605  FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_NEGATIVE ||
1606  FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO);
1607  }
1608  }

◆ IsFPRMExprRNA

bool IsFPRMExprRNA
get

Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway

Definition at line 1579 of file Expr.cs.

1579 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }

◆ IsFPRMExprRNE

bool IsFPRMExprRNE
get

Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven

Definition at line 1574 of file Expr.cs.

1574 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN; } }

◆ IsFPRMExprRTN

bool IsFPRMExprRTN
get

Indicates whether the term is the floating-point rounding numeral roundTowardNegative

Definition at line 1584 of file Expr.cs.

1584 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_NEGATIVE; } }

◆ IsFPRMExprRTP

bool IsFPRMExprRTP
get

Indicates whether the term is the floating-point rounding numeral roundTowardPositive

Definition at line 1589 of file Expr.cs.

1589 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE; } }

◆ IsFPRMExprRTZ

bool IsFPRMExprRTZ
get

Indicates whether the term is the floating-point rounding numeral roundTowardZero

Definition at line 1594 of file Expr.cs.

1594 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO; } }

◆ IsFPRMNumeral

bool IsFPRMNumeral
get

Indicates whether the term is a floating-point rounding mode numeral

Definition at line 1544 of file Expr.cs.

1544 { get { return IsFPRM && IsNumeral; } }
bool IsFPRM
Indicates whether the terms is of floating-point rounding mode sort.
Definition: Expr.cs:1532

◆ IsFPRMRoundNearestTiesToAway

bool IsFPRMRoundNearestTiesToAway
get

Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway

Definition at line 1554 of file Expr.cs.

1554 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }

◆ IsFPRMRoundNearestTiesToEven

bool IsFPRMRoundNearestTiesToEven
get

Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven

Definition at line 1549 of file Expr.cs.

1549 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN; } }

◆ IsFPRMRoundTowardNegative

bool IsFPRMRoundTowardNegative
get

Indicates whether the term is the floating-point rounding numeral roundTowardNegative

Definition at line 1559 of file Expr.cs.

1559 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_NEGATIVE; } }

◆ IsFPRMRoundTowardPositive

bool IsFPRMRoundTowardPositive
get

Indicates whether the term is the floating-point rounding numeral roundTowardPositive

Definition at line 1564 of file Expr.cs.

1564 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE; } }

◆ IsFPRMRoundTowardZero

bool IsFPRMRoundTowardZero
get

Indicates whether the term is the floating-point rounding numeral roundTowardZero

Definition at line 1569 of file Expr.cs.

1569 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO; } }

◆ IsFPRoundToIntegral

bool IsFPRoundToIntegral
get

Indicates whether the term is a floating-point roundToIntegral term

Definition at line 1694 of file Expr.cs.

1694 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_ROUND_TO_INTEGRAL; } }

◆ IsFPSqrt

bool IsFPSqrt
get

Indicates whether the term is a floating-point square root term

Definition at line 1689 of file Expr.cs.

1689 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_SQRT; } }

◆ IsFPSub

bool IsFPSub
get

Indicates whether the term is a floating-point subtraction term

Definition at line 1644 of file Expr.cs.

1644 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_SUB; } }

◆ IsFPToFp

bool IsFPToFp
get

Indicates whether the term is a floating-point conversion term

Definition at line 1764 of file Expr.cs.

1764 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_FP; } }

◆ IsFPToFpUnsigned

bool IsFPToFpUnsigned
get

Indicates whether the term is a floating-point conversion from unsigned bit-vector term

Definition at line 1769 of file Expr.cs.

1769 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_FP_UNSIGNED; } }

◆ IsFPToIEEEBV

bool IsFPToIEEEBV
get

Indicates whether the term is a floating-point conversion to IEEE-754 bit-vector term

Definition at line 1790 of file Expr.cs.

1790 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_IEEE_BV; } }

◆ IsFPToReal

bool IsFPToReal
get

Indicates whether the term is a floating-point conversion to real term

Definition at line 1784 of file Expr.cs.

1784 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_REAL; } }

◆ IsFPToSBV

bool IsFPToSBV
get

Indicates whether the term is a floating-point conversion to signed bit-vector term

Definition at line 1779 of file Expr.cs.

1779 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_SBV; } }

◆ IsFPToUBV

bool IsFPToUBV
get

Indicates whether the term is a floating-point conversion to unsigned bit-vector term

Definition at line 1774 of file Expr.cs.

1774 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_UBV; } }

◆ IsGE

bool IsGE
get

Indicates whether the term is a greater-than-or-equal

Definition at line 397 of file Expr.cs.

397 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GE; } }

◆ IsGT

bool IsGT
get

Indicates whether the term is a greater-than

Definition at line 407 of file Expr.cs.

407 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GT; } }

◆ IsIDiv

bool IsIDiv
get

Indicates whether the term is integer division (binary)

Definition at line 437 of file Expr.cs.

437 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IDIV; } }

◆ IsIff

bool IsIff
get

Indicates whether the term is an if-and-only-if (Boolean equivalence, binary)

Definition at line 313 of file Expr.cs.

313 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IFF; } }

◆ IsImplies

bool IsImplies
get

Indicates whether the term is an implication

Definition at line 328 of file Expr.cs.

328 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IMPLIES; } }

◆ IsIndex

bool IsIndex
get

Check whether expression is a sequence index.

Returns
a Boolean

Definition at line 899 of file Expr.cs.

899 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_INDEX; } }

◆ IsInt

bool IsInt
get

Indicates whether the term is of integer sort.

Definition at line 371 of file Expr.cs.

372  {
373  get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_INT_SORT; }
374  }

◆ IsIntNum

bool IsIntNum
get

Indicates whether the term is an integer numeral.

Definition at line 232 of file Expr.cs.

233  {
234  get { return IsNumeral && IsInt; }
235  }
bool IsInt
Indicates whether the term is of integer sort.
Definition: Expr.cs:372

◆ IsIntToBV

bool IsIntToBV
get

Indicates whether the term is a coercion from integer to bit-vector

This function is not supported by the decision procedures. Only the most rudimentary simplification rules are applied to this function.

Definition at line 795 of file Expr.cs.

795 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INT2BV; } }

◆ IsIntToReal

bool IsIntToReal
get

Indicates whether the term is a coercion of integer to real (unary)

Definition at line 452 of file Expr.cs.

452 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_REAL; } }

◆ IsIsEmptyRelation

bool IsIsEmptyRelation
get

Indicates whether the term is a test for the emptiness of a relation

Definition at line 1410 of file Expr.cs.

1410 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_IS_EMPTY; } }

◆ IsITE

bool IsITE
get

Indicates whether the term is a ternary if-then-else term

Definition at line 298 of file Expr.cs.

298 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ITE; } }

◆ IsLabel

bool IsLabel
get

Indicates whether the term is a label (used by the Boogie Verification condition generator).

The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.

Definition at line 824 of file Expr.cs.

824 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL; } }

◆ IsLabelLit

bool IsLabelLit
get

Indicates whether the term is a label literal (used by the Boogie Verification condition generator).

A label literal has a set of string parameters. It takes no arguments.

Definition at line 830 of file Expr.cs.

830 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }

◆ IsLE

bool IsLE
get

Indicates whether the term is a less-than-or-equal

Definition at line 392 of file Expr.cs.

392 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LE; } }

◆ IsLength

bool IsLength
get

Check whether expression is a sequence length.

Returns
a Boolean

Definition at line 893 of file Expr.cs.

893 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_LENGTH; } }

◆ IsLT

bool IsLT
get

Indicates whether the term is a less-than

Definition at line 402 of file Expr.cs.

402 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LT; } }

◆ IsModulus

bool IsModulus
get

Indicates whether the term is modulus (binary)

Definition at line 447 of file Expr.cs.

447 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MOD; } }

◆ IsMul

bool IsMul
get

Indicates whether the term is multiplication (binary)

Definition at line 427 of file Expr.cs.

427 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MUL; } }

◆ IsNot

bool IsNot
get

Indicates whether the term is a negation

Definition at line 323 of file Expr.cs.

323 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_NOT; } }

◆ IsNumeral

bool IsNumeral
get

Indicates whether the term is a numeral

Definition at line 193 of file Expr.cs.

194  {
195  get { return Native.Z3_is_numeral_ast(Context.nCtx, NativeObject) != 0; }
196  }

◆ IsOEQ

bool IsOEQ
get

Indicates whether the term is a binary equivalence modulo namings.

This binary predicate is used in proof terms. It captures equisatisfiability and equivalence modulo renamings.

Definition at line 910 of file Expr.cs.

910 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OEQ; } }

◆ IsOr

bool IsOr
get

Indicates whether the term is an n-ary disjunction

Definition at line 308 of file Expr.cs.

308 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OR; } }

◆ IsPbEq

bool IsPbEq
get

Indicates whether the term is pbeq

Definition at line 353 of file Expr.cs.

353 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_EQ; } }

◆ IsPbGe

bool IsPbGe
get

Indicates whether the term is pbge

Definition at line 363 of file Expr.cs.

363 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_GE; } }

◆ IsPbLe

bool IsPbLe
get

Indicates whether the term is pble

Definition at line 358 of file Expr.cs.

358 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_LE; } }

◆ IsPrefix

bool IsPrefix
get

Check whether expression is a prefix.

Returns
a Boolean

Definition at line 857 of file Expr.cs.

857 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_PREFIX; } }

◆ IsProofAndElimination

bool IsProofAndElimination
get

Indicates whether the term is a proof by elimination of AND

Given a proof for (and l_1 ... l_n), produces a proof for l_i T1: (and l_1 ... l_n)

Definition at line 1041 of file Expr.cs.

1041 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_AND_ELIM; } }

◆ IsProofApplyDef

bool IsProofApplyDef
get

Indicates whether the term is a proof for application of a definition

[apply-def T1]: F ~ n F is 'equivalent' to n, given that T1 is a proof that n is a name for F.

Definition at line 1270 of file Expr.cs.

1270 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_APPLY_DEF; } }

◆ IsProofAsserted

bool IsProofAsserted
get

Indicates whether the term is a proof for a fact asserted by the user.

Definition at line 920 of file Expr.cs.

920 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ASSERTED; } }

◆ IsProofCommutativity

bool IsProofCommutativity
get

Indicates whether the term is a proof by commutativity

f is a commutative operator.

This proof object has no antecedents. Remark: if f is bool, then = is iff.

Definition at line 1201 of file Expr.cs.

1201 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY; } }

◆ IsProofDefAxiom

bool IsProofDefAxiom
get

Indicates whether the term is a proof for Tseitin-like axioms

Proof object used to justify Tseitin's like axioms:

(or (not (and p q)) p) (or (not (and p q)) q) (or (not (and p q r)) p) (or (not (and p q r)) q) (or (not (and p q r)) r) ... (or (and p q) (not p) (not q)) (or (not (or p q)) p q) (or (or p q) (not p)) (or (or p q) (not q)) (or (not (iff p q)) (not p) q) (or (not (iff p q)) p (not q)) (or (iff p q) (not p) (not q)) (or (iff p q) p q) (or (not (ite a b c)) (not a) b) (or (not (ite a b c)) a c) (or (ite a b c) (not a) (not b)) (or (ite a b c) a (not c)) (or (not (not a)) (not a)) (or (not a) a)

This proof object has no antecedents. Note: all axioms are propositional tautologies. Note also that 'and' and 'or' can take multiple arguments. You can recover the propositional tautologies by unfolding the Boolean connectives in the axioms a small bounded number of steps (=3).

Definition at line 1237 of file Expr.cs.

1237 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM; } }

◆ IsProofDefIntro

bool IsProofDefIntro
get

Indicates whether the term is a proof for introduction of a name

Introduces a name for a formula/term. Suppose e is an expression with free variables x, and def-intro introduces the name n(x). The possible cases are:

When e is of Boolean type:

or:

when e only occurs positively.

When e is of the form (ite cond th el):

Otherwise: [def-intro]: (= n e)

Definition at line 1260 of file Expr.cs.

1260 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_INTRO; } }

◆ IsProofDER

bool IsProofDER
get

Indicates whether the term is a proof for destructive equality resolution

A proof for destructive equality resolution: (iff (forall (x) (or (not (= x t)) P[x])) P[t]) if x does not occur in t.

This proof object has no antecedents.

Several variables can be eliminated simultaneously.

Definition at line 1131 of file Expr.cs.

1131 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DER; } }

◆ IsProofDistributivity

bool IsProofDistributivity
get

Indicates whether the term is a distributivity proof object.

Given that f (= or) distributes over g (= and), produces a proof for (= (f a (g c d)) (g (f a c) (f a d))) If f and g are associative, this proof also justifies the following equality: (= (f (g a b) (g c d)) (g (f a c) (f a d) (f b c) (f b d))) where each f and g can have arbitrary number of arguments.

This proof object has no antecedents. Remark. This rule is used by the CNF conversion pass and instantiated by f = or, and g = and.

Definition at line 1031 of file Expr.cs.

1031 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY; } }

◆ IsProofElimUnusedVars

bool IsProofElimUnusedVars
get

Indicates whether the term is a proof for elimination of unused variables.

A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n]) (forall (x_1 ... x_n) p[x_1 ... x_n]))

It is used to justify the elimination of unused variables. This proof object has no antecedents.

Definition at line 1117 of file Expr.cs.

1117 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS; } }

◆ IsProofGoal

bool IsProofGoal
get

Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user.

Definition at line 925 of file Expr.cs.

925 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_GOAL; } }

◆ IsProofHypothesis

bool IsProofHypothesis
get

Indicates whether the term is a hypothesis marker.

Mark a hypothesis in a natural deduction style proof.

Definition at line 1145 of file Expr.cs.

1145 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS; } }

◆ IsProofIFFFalse

bool IsProofIFFFalse
get

Indicates whether the term is a proof by iff-false

T1: (not p) [iff-false T1]: (iff p false)

Definition at line 1188 of file Expr.cs.

1188 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_FALSE; } }

◆ IsProofIFFOEQ

bool IsProofIFFOEQ
get

Indicates whether the term is a proof iff-oeq

T1: (iff p q) [iff~ T1]: (~ p q)

Definition at line 1279 of file Expr.cs.

1279 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_OEQ; } }

◆ IsProofIFFTrue

bool IsProofIFFTrue
get

Indicates whether the term is a proof by iff-true

T1: p [iff-true T1]: (iff p true)

Definition at line 1179 of file Expr.cs.

1179 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_TRUE; } }

◆ IsProofLemma

bool IsProofLemma
get

Indicates whether the term is a proof by lemma

T1: false

This proof object has one antecedent: a hypothetical proof for false. It converts the proof in a proof for (or (not l_1) ... (not l_n)), when T1 contains the hypotheses: l_1, ..., l_n.

Definition at line 1158 of file Expr.cs.

1158 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_LEMMA; } }

◆ IsProofModusPonens

bool IsProofModusPonens
get

Indicates whether the term is proof via modus ponens

Given a proof for p and a proof for (implies p q), produces a proof for q. T1: p T2: (implies p q)

The second antecedents may also be a proof for (iff p q).

Definition at line 936 of file Expr.cs.

936 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS; } }

◆ IsProofModusPonensOEQ

bool IsProofModusPonensOEQ
get

Indicates whether the term is a proof by modus ponens for equi-satisfiability.

Modus ponens style rule for equi-satisfiability. T1: p T2: (~ p q)

Definition at line 1356 of file Expr.cs.

1356 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ; } }

◆ IsProofMonotonicity

bool IsProofMonotonicity
get

Indicates whether the term is a monotonicity proof object.

T1: (R t_1 s_1) ... Tn: (R t_n s_n)

Remark: if t_i == s_i, then the antecedent Ti is suppressed. That is, reflexivity proofs are suppressed to save space.

Definition at line 1003 of file Expr.cs.

1003 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }

◆ IsProofNNFNeg

bool IsProofNNFNeg
get

Indicates whether the term is a proof for a negative NNF step

Proof for a (negative) NNF step. Examples:

T1: (not s_1) ~ r_1 ... Tn: (not s_n) ~ r_n

and T1: (not s_1) ~ r_1 ... Tn: (not s_n) ~ r_n

and T1: (not s_1) ~ r_1 T2: (not s_2) ~ r_2 T3: s_1 ~ r_1' T4: s_2 ~ r_2'

(and (or r_1 r_2) (or r_1' r_2')))

Definition at line 1332 of file Expr.cs.

1332 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_NEG; } }

◆ IsProofNNFPos

bool IsProofNNFPos
get

Indicates whether the term is a proof for a positive NNF step

Proof for a (positive) NNF step. Example:

T1: (not s_1) ~ r_1 T2: (not s_2) ~ r_2 T3: s_1 ~ r_1' T4: s_2 ~ r_2'

(and (or r_1 r_2') (or r_1' r_2)))

The negation normal form steps NNF_POS and NNF_NEG are used in the following cases: (a) When creating the NNF of a positive force quantifier. The quantifier is retained (unless the bound variables are eliminated). Example T1: q ~ q_new

(b) When recursively creating NNF over Boolean formulas, where the top-level connective is changed during NNF conversion. The relevant Boolean connectives for NNF_POS are 'implies', 'iff', 'xor', 'ite'. NNF_NEG furthermore handles the case where negation is pushed over Boolean connectives 'and' and 'or'.

Definition at line 1307 of file Expr.cs.

1307 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_POS; } }

◆ IsProofOrElimination

bool IsProofOrElimination
get

Indicates whether the term is a proof by elimination of not-or

Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i). T1: (not (or l_1 ... l_n)) [not-or-elim T1]: (not l_i)

Definition at line 1051 of file Expr.cs.

1051 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM; } }

◆ IsProofPullQuant

bool IsProofPullQuant
get

Indicates whether the term is a proof for pulling quantifiers out.

A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.

Definition at line 1091 of file Expr.cs.

1091 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT; } }

◆ IsProofPushQuant

bool IsProofPushQuant
get

Indicates whether the term is a proof for pushing quantifiers in.

A proof for: (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m])) (and (forall (x_1 ... x_m) p_1[x_1 ... x_m]) ... (forall (x_1 ... x_m) p_n[x_1 ... x_m]))) This proof object has no antecedents

Definition at line 1105 of file Expr.cs.

1105 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT; } }

◆ IsProofQuantInst

bool IsProofQuantInst
get

Indicates whether the term is a proof for quantifier instantiation

A proof of (or (not (forall (x) (P x))) (P a))

Definition at line 1139 of file Expr.cs.

1139 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INST; } }

◆ IsProofQuantIntro

bool IsProofQuantIntro
get

Indicates whether the term is a quant-intro proof

Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)). T1: (~ p q)

Definition at line 1013 of file Expr.cs.

1013 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO; } }

◆ IsProofReflexivity

bool IsProofReflexivity
get

Indicates whether the term is a proof for (R t t), where R is a reflexive relation.

This proof object has no antecedents. The only reflexive relations that are used are equivalence modulo namings, equality and equivalence. That is, R is either '~', '=' or 'iff'.

Definition at line 945 of file Expr.cs.

945 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY; } }

◆ IsProofRewrite

bool IsProofRewrite
get

Indicates whether the term is a proof by rewriting

A proof for a local rewriting step (= t s). The head function symbol of t is interpreted.

This proof object has no antecedents. The conclusion of a rewrite rule is either an equality (= t s), an equivalence (iff t s), or equi-satisfiability (~ t s). Remark: if f is bool, then = is iff.

Examples: (= (+ x 0) x) (= (+ x 1 2) (+ 3 x)) (iff (or x false) x)

Definition at line 1070 of file Expr.cs.

1070 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE; } }

◆ IsProofRewriteStar

bool IsProofRewriteStar
get

Indicates whether the term is a proof by rewriting

A proof for rewriting an expression t into an expression s. This proof object can have n antecedents. The antecedents are proofs for equalities used as substitution rules. The object is used in a few cases:

  • When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
  • When converting bit-vectors to Booleans (BIT2BOOL=true)

Definition at line 1083 of file Expr.cs.

1083 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR; } }

◆ IsProofSkolemize

bool IsProofSkolemize
get

Indicates whether the term is a proof for a Skolemization step

Proof for:

This proof object has no antecedents.

Definition at line 1345 of file Expr.cs.

1345 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE; } }

◆ IsProofSymmetry

bool IsProofSymmetry
get

Indicates whether the term is proof by symmetricity of a relation

Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t). T1: (R t s) [symmetry T1]: (R s t) T1 is the antecedent of this proof object.

Definition at line 956 of file Expr.cs.

956 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SYMMETRY; } }

◆ IsProofTheoryLemma

bool IsProofTheoryLemma
get

Indicates whether the term is a proof for theory lemma

Generic proof for theory lemmas.

The theory lemma function comes with one or more parameters. The first parameter indicates the name of the theory. For the theory of arithmetic, additional parameters provide hints for checking the theory lemma. The hints for arithmetic are:

  • farkas - followed by rational coefficients. Multiply the coefficients to the inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
  • triangle-eq - Indicates a lemma related to the equivalence: (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
  • gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.

Definition at line 1375 of file Expr.cs.

1375 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TH_LEMMA; } }

◆ IsProofTransitivity

bool IsProofTransitivity
get

Indicates whether the term is a proof by transitivity of a relation

Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof for (R t u). T1: (R t s) T2: (R s u) [trans T1 T2]: (R t u)

Definition at line 968 of file Expr.cs.

968 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY; } }

◆ IsProofTransitivityStar

bool IsProofTransitivityStar
get

Indicates whether the term is a proof by condensed transitivity of a relation

Condensed transitivity proof. It combines several symmetry and transitivity proofs. Example: T1: (R a b) T2: (R c b) T3: (R c d) [trans* T1 T2 T3]: (R a d) R must be a symmetric and transitive relation.

Assuming that this proof object is a proof for (R s t), then a proof checker must check if it is possible to prove (R s t) using the antecedents, symmetry and transitivity. That is, if there is a path from s to t, if we view every antecedent (R a b) as an edge between a and b.

Definition at line 989 of file Expr.cs.

989 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR; } }

◆ IsProofTrue

bool IsProofTrue
get

Indicates whether the term is a Proof for the expression 'true'.

Definition at line 915 of file Expr.cs.

915 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRUE; } }

◆ IsProofUnitResolution

bool IsProofUnitResolution
get

Indicates whether the term is a proof by unit resolution

T1: (or l_1 ... l_n l_1' ... l_m') T2: (not l_1) ... T(n+1): (not l_n) [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')

Definition at line 1170 of file Expr.cs.

1170 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION; } }

◆ IsRatNum

bool IsRatNum
get

Indicates whether the term is a real numeral.

Definition at line 242 of file Expr.cs.

243  {
244  get { return IsNumeral && IsReal; }
245  }
bool IsReal
Indicates whether the term is of sort real.
Definition: Expr.cs:380

◆ IsReal

bool IsReal
get

Indicates whether the term is of sort real.

Definition at line 379 of file Expr.cs.

380  {
381  get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_REAL_SORT; }
382  }

◆ IsRealIsInt

bool IsRealIsInt
get

Indicates whether the term is a check that tests whether a real is integral (unary)

Definition at line 462 of file Expr.cs.

462 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IS_INT; } }

◆ IsRealToInt

bool IsRealToInt
get

Indicates whether the term is a coercion of real to integer (unary)

Definition at line 457 of file Expr.cs.

457 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_INT; } }

◆ IsRelation

bool IsRelation
get

Indicates whether the term is of relation sort.

Definition at line 1382 of file Expr.cs.

1383  {
1384  get
1385  {
1386  return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
1387  Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
1388  == (uint)Z3_sort_kind.Z3_RELATION_SORT);
1389  }
1390  }

◆ IsRelationalJoin

bool IsRelationalJoin
get

Indicates whether the term is a relational join

Definition at line 1415 of file Expr.cs.

1415 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_JOIN; } }

◆ IsRelationClone

bool IsRelationClone
get

Indicates whether the term is a relational clone (copy)

Create a fresh copy (clone) of a relation. The function is logically the identity, but in the context of a register machine allows for terms of kind

See also
IsRelationUnion

to perform destructive updates to the first argument.

Definition at line 1497 of file Expr.cs.

1497 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_CLONE; } }

◆ IsRelationComplement

bool IsRelationComplement
get

Indicates whether the term is the complement of a relation

Definition at line 1475 of file Expr.cs.

1475 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_COMPLEMENT; } }

◆ IsRelationFilter

bool IsRelationFilter
get

Indicates whether the term is a relation filter

Filter (restrict) a relation with respect to a predicate. The first argument is a relation. The second argument is a predicate with free de-Bruijn indices corresponding to the columns of the relation. So the first column in the relation has index 0.

Definition at line 1445 of file Expr.cs.

1445 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_FILTER; } }

◆ IsRelationNegationFilter

bool IsRelationNegationFilter
get

Indicates whether the term is an intersection of a relation with the negation of another.

Intersect the first relation with respect to negation of the second relation (the function takes two arguments). Logically, the specification can be described by a function

target = filter_by_negation(pos, neg, columns)

where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that target are elements in x in pos, such that there is no y in neg that agrees with x on the columns c1, d1, .., cN, dN.

Definition at line 1461 of file Expr.cs.

1461 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER; } }

◆ IsRelationProject

bool IsRelationProject
get

Indicates whether the term is a projection of columns (provided as numbers in the parameters).

The function takes one argument.

Definition at line 1433 of file Expr.cs.

1433 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_PROJECT; } }

◆ IsRelationRename

bool IsRelationRename
get

Indicates whether the term is the renaming of a column in a relation

The function takes one argument. The parameters contain the renaming as a cycle.

Definition at line 1470 of file Expr.cs.

1470 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_RENAME; } }

◆ IsRelationSelect

bool IsRelationSelect
get

Indicates whether the term is a relational select

Check if a record is an element of the relation. The function takes n+1 arguments, where the first argument is a relation, and the remaining n arguments correspond to a record.

Definition at line 1485 of file Expr.cs.

1485 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_SELECT; } }

◆ IsRelationStore

bool IsRelationStore
get

Indicates whether the term is an relation store

Insert a record into a relation. The function takes n+1 arguments, where the first argument is the relation and the remaining n elements correspond to the n columns of the relation.

Definition at line 1400 of file Expr.cs.

1400 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_STORE; } }

◆ IsRelationUnion

bool IsRelationUnion
get

Indicates whether the term is the union or convex hull of two relations.

The function takes two arguments.

Definition at line 1421 of file Expr.cs.

1421 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_UNION; } }

◆ IsRelationWiden

bool IsRelationWiden
get

Indicates whether the term is the widening of two relations

The function takes two arguments.

Definition at line 1427 of file Expr.cs.

1427 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_WIDEN; } }

◆ IsRemainder

bool IsRemainder
get

Indicates whether the term is remainder (binary)

Definition at line 442 of file Expr.cs.

442 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REM; } }

◆ IsReplace

bool IsReplace
get

Check whether expression is a replace.

Returns
a Boolean

Definition at line 881 of file Expr.cs.

881 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_REPLACE; } }

◆ IsSelect

bool IsSelect
get

Indicates whether the term is an array select.

Definition at line 489 of file Expr.cs.

489 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SELECT; } }

◆ IsSetComplement

bool IsSetComplement
get

Indicates whether the term is set complement

Definition at line 536 of file Expr.cs.

536 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_COMPLEMENT; } }

◆ IsSetDifference

bool IsSetDifference
get

Indicates whether the term is set difference

Definition at line 531 of file Expr.cs.

531 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_DIFFERENCE; } }

◆ IsSetIntersect

bool IsSetIntersect
get

Indicates whether the term is set intersection

Definition at line 526 of file Expr.cs.

526 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_INTERSECT; } }

◆ IsSetSubset

bool IsSetSubset
get

Indicates whether the term is set subset

Definition at line 541 of file Expr.cs.

541 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_SUBSET; } }

◆ IsSetUnion

bool IsSetUnion
get

Indicates whether the term is set union

Definition at line 521 of file Expr.cs.

521 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_UNION; } }

◆ IsStore

bool IsStore
get

Indicates whether the term is an array store.

It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j). Array store takes at least 3 arguments.

Definition at line 484 of file Expr.cs.

484 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_STORE; } }

◆ IsString

bool IsString
get

Check whether expression is a string constant.

Returns
a Boolean

Definition at line 839 of file Expr.cs.

839 { get { return IsApp && Native.Z3_is_string(Context.nCtx, NativeObject) != 0; } }

◆ IsSub

bool IsSub
get

Indicates whether the term is subtraction (binary)

Definition at line 417 of file Expr.cs.

417 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SUB; } }

◆ IsSuffix

bool IsSuffix
get

Check whether expression is a suffix.

Returns
a Boolean

Definition at line 863 of file Expr.cs.

863 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_SUFFIX; } }

◆ IsTrue

bool IsTrue
get

Indicates whether the term is the constant true.

Definition at line 278 of file Expr.cs.

278 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TRUE; } }

◆ IsUMinus

bool IsUMinus
get

Indicates whether the term is a unary minus

Definition at line 422 of file Expr.cs.

422 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UMINUS; } }

◆ IsWellSorted

bool IsWellSorted
get

Indicates whether the term is well-sorted.

Returns
True if the term is well-sorted, false otherwise.

Definition at line 202 of file Expr.cs.

203  {
204  get { return Native.Z3_is_well_sorted(Context.nCtx, NativeObject) != 0; }
205  }

◆ IsXor

bool IsXor
get

Indicates whether the term is an exclusive or

Definition at line 318 of file Expr.cs.

318 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR; } }

◆ NumArgs

uint NumArgs
get

The number of arguments of the expression.

Definition at line 69 of file Expr.cs.

70  {
71  get { return Native.Z3_get_app_num_args(Context.nCtx, NativeObject); }
72  }

Referenced by Expr.Update().

◆ Sort

Sort Sort
get

The Sort of the term.

Definition at line 210 of file Expr.cs.

211  {
212  get
213  {
214  return Sort.Create(Context, Native.Z3_get_sort(Context.nCtx, NativeObject));
215  }
216  }
Sort Sort
The Sort of the term.
Definition: Expr.cs:211

◆ String

string String
get

Retrieve string corresponding to string constant.

the expression should be a string constant, (IsString should be true).

Definition at line 845 of file Expr.cs.

845 { get { return Native.Z3_get_string(Context.nCtx, NativeObject); } }