
SMT Solving
Fundamentals

Nikolaj Bjørner, Microsoft Research, RiSE
TU Wien, 2025

A Laura Kovacs guest lecture production

Is formula  satisfiable
modulo theory T ?

SMT solvers have specialized

algorithms for T

Satisfiability Modulo Theories (SMT)

SAT
Theory

Solvers
SMT

CDCL(T)

Equality + UF

Arithmetic

Bit-vectors

…

Case Analysis

Elements of Solving

Satisfiability
Preserving

Pre/in-processing

SearchEncoding and re-encoding
can also be considered an
element of solving loop.

Search Engines
CDCL(T) SPACER NLSAT QSAT

overview

x  0, y = x + 1, (y > 2  y < 1)

𝑝1, 𝑝2, (𝑝3  𝑝4)

𝑝1, 𝑝2, 𝑝3, 𝑝4

x  0, y = x + 1, y ≤ 2, y < 1 x  0, y = x + 1, y < 1

𝑝1, 𝑝2, 𝑝4

(¬𝑝1 ∨ ¬𝑝2 ∨ ¬𝑝4)

SAT

𝛼

𝛾

Theory
Conflict

𝛼

Block

Strengthen

CDCL(T)

CDCL(T) – Main State Variables

• F – set of clauses
• Split into irredundant and redundant clauses.

• Redundant clauses can be garbage collected.

• 2 literal watch list and binary clause optimization

• M – a trail of assigned literals

• C – a conflict clause

⟨𝑀; 𝐹; 𝐶⟩ ⟨𝑀; 𝐹⟩ Conflict StateSearch State

CDCL(T) - Invariants

M F
𝐶

CDCL(T) – Dual Model/Proof search

P
ro

o
fs

C
o

n
flict C

la
u

se
s

M
o

d
e
ls

li
te

ra
l
a
ss

ig
n

m
e
n

ts
B

a
ck

ju
m

p
P

ro
p

a
g

a
te

Dichotomy – Proofs and Models

Farkas Lemma

1. There is an 𝑥 such that: 𝐴𝑥 = 𝑏 ∧ 𝑥 ≥ 0

2. There is a 𝑦 such that: 𝑦𝐴 ≥ 0 ∧ 𝑦𝑏 < 0

For every matrix 𝐴, vector 𝑏 it is the case that
either (1) or (2) holds (and not both).

From DPLL to CDCL

1. There is 𝑀′ ⊇ 𝑀 such that 𝑀′ ⊨ 𝐹

2. There is 𝑀′ ⊆ 𝑀 and proof Π such that 𝐹 ⊢Π 𝑀′

Given 𝑀 can it be extended to 𝑀’ to satisfy (1)?
If not, find subset 𝑀′ to establish (2).
(that is inconsistent with F)

If 𝑀 ⊢ ¬𝐹 then
- 𝐶, ℓ ⊆ 𝑀 for some 𝐹 ⊢ 𝐶 ∨ ℓ (or 𝐹 contains ∅)
- for every 𝐷, where
 - ഥ𝐷, ҧ𝐶 ⊆ 𝑀′ ⊆ 𝑀,
 - 𝑀′ ⊢ (𝐷 ∨ ¬ℓ)
 it is not possible to extend 𝑀′ to satisfy 𝐹

Corollary

Conflict learning (resolution)
extends F by clauses that
block shorter models

CDCL(T) as inference rules

CDCL(T) – SAT vs SMT

SAT engine

• Truth assignment is symmetric for Boolean
variables

• Probing (for failed literals)
• L is failed if asserting L & F infers false by unit

propagation.
• Cost of propagation controlled by clause watch list

• Boolean Variables are fixed during search

• “Fast restart” introduced to prioritize variables
used in conflicts

SMT engine

• Truth values of Booleans are not independent
• 𝑥 ≤ 0, 𝑥 ≤ 1 are dependent

• Cost of propagation depends on theories

• Quantifier instantiation, theory lemmas introduce
fresh literals (all the time)

• Fast restarts appears likely not a great idea

CDCL – CaDiCaL loop

CDCL(T)

Solver Internals

Terms and Formulas

Terms are hash-consed

 let t = App(f,args)
 let t’ = termTable[t]
mkApp(f, args) = if t’ = nil then
 termTable[t]← 𝑡; t
 else t’

de Bruijn
index

Assertion Internals

(assert (! p :named q))

assert_and_track(p, q);

⟨𝜑 = 𝑝, 𝜋 = 𝑎𝑠𝑠𝑢𝑚𝑒 𝑝 , 𝛿 = 𝑞⟩

SMT2 file

API

Pre-processing
simplification

Tactics

Solver Transformed Assertions

Core uses
dependencies

Proof uses justifications

From Assertions to Solver State

𝑥 ≥ 0 ∨ (𝑝 ∧ 𝑞 𝑥)

1 2 1 3

 1 ↦ 𝑥 ≥ 0, 2 ↦ 𝑝, 3 ↦ 𝑞(𝑥)

 𝑛23: ⟨𝑓 = 𝑥, 𝑎𝑟𝑔𝑠 = 𝜖,
 𝑃 = 𝑛27 ,
 𝑡ℎ = 𝑎𝑟𝑖𝑡ℎ, 4 ⟩

Clauses

bool_var2expr

expr2enode

z3 search.smt2 /tr:euf tactic.default_tactic=smt sat.smt=true

Core Solver interface

EUF Core SolverCDCL

𝑛23: ⟨𝑓 = 𝑥, 𝑎𝑟𝑔𝑠 = 𝜖,
 𝑃 = 𝑛27 ,
 𝑡ℎ = 𝑎𝑟𝑖𝑡ℎ, 4 ⟩

 𝑛25: ⟨≥, 𝑎𝑟𝑔𝑠 = 𝜖,
𝑏𝑜𝑜𝑙𝑉𝑎𝑟 = 1,
𝑡ℎ = [𝑎𝑟𝑖𝑡ℎ, 5]

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ℓ@1

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ℓ, 𝐸𝑥𝑝𝑙𝑎𝑖𝑛

Dispatch
Theory
Solver

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑥 ≥ 0@5, 𝐸𝑥𝑝𝑙𝑎𝑖𝑛

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑛 ≃ 𝑛′, 𝐸𝑥𝑝𝑙𝑎𝑖𝑛

Does not
participate in

congruence closure

Theory
variable

Custom Theories

Model-based Theory Combination

𝑥 = 𝑓 𝑧 , 𝑓 𝑥 ≃ 𝑓 𝑦 , 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑧 = 𝑦 − 1

𝑥 = ⋆1 𝑦 = ⋆2 𝑧 = ⋆3 𝑥 = 1, 𝑦 = 1, 𝑧 = 0
 𝑓 ⋆1 = ⋆1 𝑓 ⋆2 = ⋆2 𝑓 ⋆3 =⋆1

Create fresh literal 𝑥 ≃ 𝑦
Case split on 𝑥 ≃ 𝑦 ← ⊤

𝑥 = 𝑓 𝑧 , 𝑓 𝑥 ≃ 𝑓 𝑦 , 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑧 = 𝑦 − 1, 𝒙 ≠ 𝒚

Conflict, backtrack 𝒙 ≠ 𝒚

𝑥 = ⋆1 𝑦 = ⋆2 𝑧 = ⋆1
 𝑓 ⋆1 = ⋆1 𝑓 ⋆2 = ⋆2

Create fresh literal 𝑥 ≃ 𝑧
Case split on 𝑥 ≃ 𝑧 ← ⊤

𝑥 ≃ 𝑧 𝑥 = 0 𝑦 = 1, 𝑧 = 0

Relevancy Filtering

Purpose: expose only subset of literal assignments to T solvers

Reason: Delays introduction of terms for T-and quantifier instantiation

Idea: Simulate tableau reasoning on top of CDCL

(𝑎 ∧ 𝑏 ∨ 𝑐) 𝑎 ∧ 𝑏 ∨ 𝑐 (¬ 𝑎 ∧ 𝑏 ∨ 𝑎) ¬ 𝑎 ∧ 𝑏 ∨ 𝑏 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∨ ¬𝑏

Scenario 1: c is assigned to T, root clause is satisfied. Atoms 𝑎 ∧ 𝑏 , 𝑎, 𝑏 are never set relevant

Scenario 2: c is assigned to F, 𝑎 ∧ 𝑏 is assigned T. Atoms 𝑎, 𝑏 are marked relevant (and propagated to T)

Root clause Definition clauses

smt.relevancy={0,1,2} (least to most use of relevancy filter)

Ackermann reductions

smt.dack.threshold = 10, smt.dack.eq = false

Iterative Deepening

- Assume ((_ is nil) list1) ((_ is nil) list2)

- Unsat core: ((_ is nil) list1)

- Assume ((_ is nil) (tail list1)) ((_ is nil) list2)

- Unsat core: ((_ is nil) list2)

- Assume ((_ is nil) (tail list1)) ((_ is nil) (tail list2))

- Unsat core: ((_ is nil) (tail list1))

- Assume ((_ is nil) (tail (tail list1))) ((_ is nil) (tail list2))

- SAT

Pre-processing
Rewriting Simplification

For Finite Sets

Finite Set Algebraic Simplification rules

• 𝑆 ∩ ∅ → ∅

• 𝑆 ∪ 𝑇 → 𝑇 ∪ 𝑆 if code(𝑇) < code(𝑆)

• 𝑥 ∈ 𝑦 → 𝑥 = 𝑦

Finite Sets Rewriter

Let’s be lazy, but not too lazy, but verify

1. Ask copilot to produce rewrite rules and implementation

2. Axiomatize finite sets for a 3-4 variables. Enumerate terms and
mine for equalities.

Q: how would you address the following?
• Correctness of simplification rules and code.

• Adequacy of simplification rules? Do they cover useful cases, what could be
covered.

Pre-processing
Global Simplification

For Finite Sets

Global Simplification

𝐹 𝑆 ∩ 𝑋 - suppose this is the only occurrence of 𝑋 in 𝐹.

Can we solve equisatisfiable F without 𝑆 ∩ 𝑋?

Example: If 𝐹 is monotone in 𝑆 ∩ 𝑋, we could replace 𝑆 ∩ 𝑋 by 𝑆.

Task 3: develop global simplification rules for finite sets. Integrate rules
into

	Slide 1: SMT Solving Fundamentals
	Slide 2
	Slide 3: CDCL(T)
	Slide 4: Elements of Solving
	Slide 5: Search Engines
	Slide 6: overview
	Slide 7: CDCL(T)
	Slide 8: CDCL(T) – Main State Variables
	Slide 9: CDCL(T) - Invariants
	Slide 10: CDCL(T) – Dual Model/Proof search
	Slide 11: Dichotomy – Proofs and Models
	Slide 12: CDCL(T) as inference rules
	Slide 13: CDCL(T) – SAT vs SMT
	Slide 14: CDCL – CaDiCaL loop
	Slide 15: CDCL(T)
	Slide 16: Solver Internals
	Slide 17: Terms and Formulas
	Slide 18: Assertion Internals
	Slide 19: From Assertions to Solver State
	Slide 20: Core left right arrow Solver interface
	Slide 21: Custom Theories
	Slide 22: Model-based Theory Combination
	Slide 23: Relevancy Filtering
	Slide 24: Ackermann reductions
	Slide 25: Iterative Deepening
	Slide 26: Pre-processing Rewriting Simplification
	Slide 27: Finite Set Algebraic Simplification rules
	Slide 28: Finite Sets Rewriter
	Slide 29: Let’s be lazy, but not too lazy, but verify
	Slide 30: Pre-processing Global Simplification
	Slide 31: Global Simplification

