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Is formula   satisfiable 
modulo theory T ? 

SMT solvers have specialized 

algorithms for T

Satisfiability Modulo Theories (SMT)
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Elements of Solving

Satisfiability 
Preserving 

Pre/in-processing

SearchEncoding and re-encoding
can also be considered an 
element of solving loop.



Search Engines
CDCL(T) SPACER NLSAT  QSAT



overview



x  0,    y = x + 1,    (y > 2  y < 1) 

𝑝1,  𝑝2,  (𝑝3  𝑝4)

𝑝1, 𝑝2,  𝑝3,  𝑝4

x  0, y = x + 1, y ≤ 2, y < 1 x  0, y = x + 1, y < 1

𝑝1, 𝑝2,  𝑝4

(¬𝑝1 ∨ ¬𝑝2 ∨ ¬𝑝4)
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CDCL(T) – Main State Variables

• F – set of clauses
• Split into irredundant and redundant clauses. 

• Redundant clauses can be garbage collected.

• 2 literal watch list and binary clause optimization

• M – a trail of assigned literals

• C – a conflict clause

⟨𝑀; 𝐹; 𝐶⟩ ⟨𝑀; 𝐹⟩ Conflict StateSearch State



CDCL(T) - Invariants 

M F
𝐶



CDCL(T) – Dual Model/Proof search 
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Dichotomy – Proofs and Models

Farkas Lemma

1. There is an 𝑥 such that:  𝐴𝑥 = 𝑏 ∧ 𝑥 ≥ 0

2. There is a 𝑦 such that:  𝑦𝐴 ≥ 0 ∧ 𝑦𝑏 < 0

For every matrix 𝐴, vector 𝑏 it is the case that
either (1) or (2) holds (and not both). 

From DPLL to CDCL

1. There is 𝑀′ ⊇ 𝑀 such that  𝑀′ ⊨ 𝐹

2. There is 𝑀′ ⊆ 𝑀 and proof Π such that  𝐹 ⊢Π 𝑀′ 
 
Given 𝑀 can it be extended to 𝑀’ to satisfy (1)?
If not, find subset 𝑀′ to establish (2). 
(that is inconsistent with F)

If  𝑀 ⊢ ¬𝐹 then 
- 𝐶, ℓ ⊆ 𝑀 for some 𝐹 ⊢ 𝐶 ∨ ℓ (or 𝐹 contains ∅)
-  for every 𝐷, where 
 -  ഥ𝐷, ҧ𝐶  ⊆ 𝑀′ ⊆ 𝑀,  
 - 𝑀′ ⊢ (𝐷 ∨ ¬ℓ)
    it is not possible to extend 𝑀′ to satisfy 𝐹

Corollary 

Conflict learning (resolution)
extends F by clauses that
block shorter models



CDCL(T) as inference rules



CDCL(T) – SAT vs SMT

SAT engine

• Truth assignment is symmetric for Boolean 
variables

• Probing (for failed literals)
• L is failed if asserting L & F infers false by unit 

propagation.
• Cost of propagation controlled by clause watch list

• Boolean Variables are fixed during search

• “Fast restart” introduced to prioritize variables 
used in conflicts

SMT engine

• Truth values of Booleans are not independent
• 𝑥 ≤ 0, 𝑥 ≤ 1 are dependent  

• Cost of propagation depends on theories

• Quantifier instantiation, theory lemmas introduce 
fresh literals (all the time)

• Fast restarts appears likely not a great idea



CDCL – CaDiCaL loop



CDCL(T) 



Solver Internals



Terms and Formulas

Terms are hash-consed

     let t = App(f,args)
     let t’ = termTable[t] 
mkApp(f, args) =   if t’ = nil then 
          termTable[t]← 𝑡; t 
       else t’

de Bruijn 
index



Assertion Internals

(assert (! p :named q))

assert_and_track(p, q);

⟨𝜑 = 𝑝,  𝜋 = 𝑎𝑠𝑠𝑢𝑚𝑒 𝑝 , 𝛿 = 𝑞⟩

SMT2 file

API

Pre-processing 
simplification

Tactics

Solver Transformed Assertions

Core uses 
dependencies

Proof uses justifications



From Assertions to Solver State

𝑥 ≥ 0 ∨  (𝑝 ∧ 𝑞 𝑥 )

1 2 1 3

 1 ↦ 𝑥 ≥ 0, 2 ↦ 𝑝, 3 ↦ 𝑞(𝑥)

 𝑛23: ⟨𝑓 = 𝑥, 𝑎𝑟𝑔𝑠 = 𝜖, 
            𝑃 = 𝑛27 , 
            𝑡ℎ = 𝑎𝑟𝑖𝑡ℎ, 4 ⟩

Clauses

bool_var2expr

expr2enode

z3 search.smt2 /tr:euf tactic.default_tactic=smt sat.smt=true



Core  Solver interface

EUF Core SolverCDCL

 

𝑛23: ⟨𝑓 = 𝑥, 𝑎𝑟𝑔𝑠 = 𝜖, 
            𝑃 = 𝑛27 , 
            𝑡ℎ = 𝑎𝑟𝑖𝑡ℎ, 4 ⟩

 𝑛25: ⟨≥, 𝑎𝑟𝑔𝑠 = 𝜖, 
𝑏𝑜𝑜𝑙𝑉𝑎𝑟 = 1,
𝑡ℎ = [ 𝑎𝑟𝑖𝑡ℎ, 5 ]

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ℓ@1

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ℓ, 𝐸𝑥𝑝𝑙𝑎𝑖𝑛

Dispatch 
Theory 
Solver

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑥 ≥ 0@5, 𝐸𝑥𝑝𝑙𝑎𝑖𝑛

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑛 ≃ 𝑛′, 𝐸𝑥𝑝𝑙𝑎𝑖𝑛

Does not 
participate in 

congruence closure

Theory 
variable



Custom Theories 



Model-based Theory Combination

𝑥 = 𝑓 𝑧 , 𝑓 𝑥 ≃ 𝑓 𝑦 ,  0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑧 = 𝑦 − 1

𝑥 = ⋆1 𝑦 = ⋆2 𝑧 = ⋆3    𝑥 = 1, 𝑦 = 1, 𝑧 = 0 
 𝑓 ⋆1 = ⋆1 𝑓 ⋆2 = ⋆2 𝑓 ⋆3 =⋆1    

Create fresh literal 𝑥 ≃ 𝑦
Case split on 𝑥 ≃ 𝑦 ← ⊤ 

𝑥 = 𝑓 𝑧 , 𝑓 𝑥 ≃ 𝑓 𝑦 ,  0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑧 = 𝑦 − 1, 𝒙 ≠ 𝒚

Conflict, backtrack 𝒙 ≠ 𝒚

𝑥 = ⋆1 𝑦 = ⋆2 𝑧 = ⋆1   
 𝑓 ⋆1 = ⋆1 𝑓 ⋆2 = ⋆2  

Create fresh literal 𝑥 ≃ 𝑧
Case split on 𝑥 ≃ 𝑧 ← ⊤ 

𝑥 ≃ 𝑧 𝑥 = 0 𝑦 = 1, 𝑧 = 0 



Relevancy Filtering

Purpose: expose only subset of literal assignments to T solvers

Reason: Delays introduction of terms for T-and quantifier instantiation

Idea: Simulate tableau reasoning on top of CDCL

( 𝑎 ∧ 𝑏 ∨ 𝑐) 𝑎 ∧ 𝑏 ∨ 𝑐  (¬ 𝑎 ∧ 𝑏 ∨ 𝑎) ¬ 𝑎 ∧ 𝑏 ∨ 𝑏 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∨ ¬𝑏

Scenario 1: c is assigned to T, root clause is satisfied. Atoms 𝑎 ∧ 𝑏 , 𝑎, 𝑏 are never set relevant

Scenario 2: c is assigned to F, 𝑎 ∧ 𝑏  is assigned T.    Atoms 𝑎, 𝑏 are marked relevant (and propagated to T)

Root clause Definition clauses

smt.relevancy={0,1,2} (least to most use of relevancy filter)



Ackermann reductions

smt.dack.threshold = 10,   smt.dack.eq = false



Iterative Deepening

- Assume ((_ is nil) list1) ((_ is nil) list2)

- Unsat core: ((_ is nil) list1) 

- Assume ((_ is nil) (tail list1)) ((_ is nil) list2)

- Unsat core: ((_ is nil) list2) 

- Assume ((_ is nil) (tail list1)) ((_ is nil) (tail list2))

- Unsat core: ((_ is nil) (tail list1))  

- Assume ((_ is nil) (tail (tail list1))) ((_ is nil) (tail list2))

- SAT



Pre-processing 
Rewriting Simplification

For Finite Sets



Finite Set Algebraic Simplification rules

• 𝑆 ∩ ∅ →  ∅

• 𝑆 ∪ 𝑇 → 𝑇 ∪ 𝑆 if code(𝑇) < code(𝑆)

• 𝑥 ∈  𝑦 → 𝑥 = 𝑦



Finite Sets Rewriter



Let’s be lazy, but not too lazy, but verify

1. Ask copilot to produce rewrite rules and implementation

2. Axiomatize finite sets for a 3-4 variables. Enumerate terms and 
mine for equalities. 

Q: how would you address the following?
• Correctness of simplification rules and code.

• Adequacy of simplification rules? Do they cover useful cases, what could be 
covered.



Pre-processing 
Global Simplification

For Finite Sets



Global Simplification 

𝐹 𝑆 ∩ 𝑋   - suppose this is the only occurrence of 𝑋 in 𝐹.

Can we solve equisatisfiable F without 𝑆 ∩ 𝑋?

Example: If 𝐹 is monotone in 𝑆 ∩ 𝑋, we could replace 𝑆 ∩ 𝑋 by 𝑆.

Task 3: develop global simplification rules for finite sets. Integrate rules 
into 
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