SMT Solving
Fundamentals

L
0_\(|

N\

Nikolaj Bjgrner, Microsoft Research, RiSE
TU Wien, 2025

\

A Laura Kovacs guest lecture production

Satisfiability Modulo Theories (SMT)

Is formula ¢ satisfiable

modulo theory T ?
-

SMT solvers have specialized
algorithms for T

CDCL(T)

Theory

—
Solvers AR
Equality + UF
Arithmetic
Bit-vectors

Elements of Solving

4 N
Satisfiability
Preserving
Pre/in-processing
- /
A
\ 4
/

Encoding and re-encoding Sea rCh
can also be considered an
element of solving loop. _

Search Engines

CDCL(T) SPACER NLSAT QSAT

2 overview

[C++ Python .Net Java Ocaml]

y

E—

[SMTLIB2

Y

RN

Optimization

(——

Preprocessing

Tactics

Cube & Conquer

\

J

Tacticals: Then, Or, Probe, Parallel Or/Then

~

)
N

Solvers
R ~
SMT Fixedpoint
LS J S o
s N K ™\
NLSat SAT
\. J 3 e
QSAT

CDCL(T)

x>0, y=x+1, (y>2vy<l)

a

D1 D2 (p3Vvp,) < Strengthen (apy V —py V ps)

T
XSAT/ Block

Py P2, —P3, P4 Py P2, P4

¥V = a
Theory
Conflict

x=20,y=x+1,y<2,y<1 x=>20,y=x+1,y<1

CDCL(T) — Main State Variables

(M; F) (M; F; C)

* F—set of clauses
e Splitinto irredundant and redundant clauses.
 Redundant clauses can be garbage collected.
* 2 literal watch list and binary clause optimization

* M — a trail of assigned literals
e C—a conflict clause

CDCL(T) - Invariants

e The conflict clause C'is false in M and a consequence of F'. Thus, for state (M; F'; C) we
have F' =7 C aswellas C € M.
e A propagated literal is justified by the current partial model M. Thus, for state (M, £ F)

we have F' =p C, ¢ € C,and foreach /' € C'\ {/} : F c M.

CDCL(T) — Dual Model/Proof search

siusuitbisse _m_wu,_\h mpmmma
S[SROIARS
\\... m\f

Backjum
AL u moi__nﬁ Clauses

AV

Dichotomy — Proofs and Models

Farkas Lemma

1. Thereisanxsuchthat: Ax =bAx =0
2. Thereisaysuchthat: yA=0Ayb <0

For every matrix A, vector b it is the case that
either (1) or (2) holds (and not both).

Corollary

Conflict learning (resolution)
extends F by clauses that
block shorter models

From DPLL to CDCL

1. ThereisM' 2 M suchthat M' E F

2. Thereis M’ € M and proof IT such that F g M’

Given M can it be extended to M’ to satisfy (1)?
If not, find subset M’ to establish (2).
(that is inconsistent with F)

If M +~ —F then
-C,¥ S M forsome F - C V £ (or F contains Q)
- for every D, where
-D,C cM cM,
-M"+ (D V =?)
it is not possible to extend M’ to satisfy F

CDCL(T) as inference rules

Sat (M; F) = SAT SAT = Theory(M, F)
Conflict (M; F) = (M; F; C) C' = Theory(M, F)
Augment (M; F') = (M, A; I') A = Theory(M, F)
Unsat (M; 0, F') = UNSAT

Resume (M,Fs; F; C)Y = (M, F) teC

Resolve (M, (9" F; C) = (M; F; (C \{f}) u(C'\{{}))? e C

Backtrack (M, A; F; C) = (M; F; C) otherwise

CDCL(T) — SAT vs SMT

SAT engine SMT engine

* Truth assignment is symmetric for Boolean Truth values of Booleans are not independent
variables * x<0,x <1 aredependent

* Probing (for failed literals)

* Lisfailed if asserting L & F infers false by unit
propagation.

* Cost of propagation controlled by clause watch list

Cost of propagation depends on theories

e Boolean Variables are fixed during search

Quantifier instantiation, theory lemmas introduce
fresh literals (all the time)

* “Fast restart” introduced to prioritize variables
used in conflicts

Fast restarts appears likely not a great idea

CDCL — CaDiCal loop

def CDCL():
while True:

if [] in clauses:
elif in_conflict():
elif not free vars:
elif should propagate():
elif should simplify():
elif should _restart():
elif should prune():
else:

return UNSAT
learn(); backtrack()
return SAT
propagate()
simplify()

restart()
prune_clauses()

var = choose_var(free_vars)

sign = choose_sign(var)
assign(var, sign)

CDCL(T)

def CDCL():

while True:

if [] in clauses: return UNSAT
elif in_conflict(): learn(); backtrack()
elif not free_vars: if theory.delay propagate() return SAT

elif should _propagate(): propagate(); theory.propagate()
elif should simplify(): simplify(); theory.simplify()
elif should restart(): restart()

elif should _gc(): gc(); theory.gc()
else:

theory.push()

var = choose_var(free_vars)

sign = choose sign(var)
assign(var, sign)
theory.assign(var, sign)

Solver Internals

Terms and Formulas -

index

type Expr
Var{ index : int; sort : Sort }
App{ ¥ : FuncDecl; args : list<Expr> }

Quantifier{ b : Binder; decl : list<Declaration>; body : Expr; ...

Terms are hash-consed

let t = App(f,args)
let t’ = termTable[t]

mkApp(f, args) = if t’ = nil then
termTable[t]< t; t
else t’

Assertion Internals

SMT2 file

(assert (! p :named q))

assert_and_track(p, q);

— —
>
=

Bool the current formula

@
m : Proof
0 : Dependency A dependency structure for the formula

a justification for the formula

A 4

)

m = assume(p), 6 =q)

(p =p,

2

Pre-processing

simplification
Core uses

dependencies

Solver

Proof uses justifications

Tactics

Transformed Assertions

none @1
binary 3@1
B none (@2
none @3
2)

From Assertions to Solver State

newlits © ghead: 8
neweqs © ghead: 8
(declare-fun q (Int) Bool): un 27
#32 := 1 [t 5:0]
1.8 [t 5:1]
8 [t 5:2]
0.8 [t 5:3]
(>= x 8) [bl := T no-cgc] [t 5:5]
x [p 27] [t 5:4]
p [b2 := F]
:= (g x) [b3 := F]
bool-vars
1: 25 1_true (>= x @) arith
2: 26 l_false p
3: 27 1_false (q x)
~ of constraints = 186

=

122020 p30 000 B8
a5 = args = &
(e, 0)

P = [n27]1 oo
th = |(arith, 4)]) e e e

(1, 8)
(1, @)

= #33: 1.8

int := #24: @

1= #34: 6.8

int, shared := #23: x
. . VE] _true := #25: (>= x @)
z3 search.smt2 /tr:euf tactic.default_tactic=smt sat.smt=true }

Core < Solver interface

CDCL EUF Core Solver

Nno3: {(f = x,args = ¢,

assigned({@1) P = [Tl27], propagate(x = 0@5, Explain)
> th = [(arith,4)])) .

N,c: (=,args = €, DTi;p:(a)trch
boolVar =1, o
th = [(arith,5)]

propagate (£, Explain) propagate(n =~ n', Explain)

Theory
variable

Does not

participate in
congruence closure

Custom Theories

» fixed: The CDCL core assigned a
boolean/bit-vector value to a registered
expression.

» eq: The EUF solver merged two
equivalence classes. The two merged
representatives will be reported.

» created: A new instance of a function
symbol is encountered. e.g., f(x) was
instantiated to f(a).

» final: The solver got a consistent
assignment to all boolean variables. All
theories get the final chance to intervene.

» Further: push, pop, fresh, decide, and
diseq

Internal to Z3

Clause Set +
Equality Graph +
Assignments
4 P

User-Propagator

Reqgister
Term

------- Messsessseeeeee Tt Internalization

clause and |
variable |
removal + |

wariable

~__| Analyze + Resolve

unassign O

.
[wser-function] Created

+{ Propagate Yo { Conflict)

[failed] |] .
5 Propositional Conflict op
¢ Unsat .
[term registerad] Fixed
[conflict]
é Merge Equality .
Classes fterm registered] {D'S]Eq
* Push
Start Main Loop Choose
_-'/r [needs to branch] Variahle
" t * | [term registerad] .
= = Decide
=t 3
@ E2 EA [on next branching]
=2 =] =
n = o
: i m
a3 o =3
a @ 3
o =
=
* Check Lazy .
Theories # Final
i [nothing propagated]
Model Generation |~ B MBQI e Fresh
[first ima]

I

subquery with new propagator

Quantifier Reasoning

Sat | [subguery = Unsat]

Model-based Theory Combination

x=f(2),f(x)# f(y), 0<x<10<5y<1lz=y —1

X =% Y =%y Z = %3 x=1,y=1,z=0
f(x1) =% f(*p) =%, f(*x3) =%

Create fresh literal x = y /

Casesplitonx =y « T

— Conflict, backtrack x + y

x=f(2),f(x)# f(y), 0<x<1,0<y<lz=y—-1x#y

Create fresh literal x = z
Casesplitonx =~z « T 7z _— x=0y=1z=0

X=KYy=*zZ=%

f(x1) = %1 f(p) =%,

Relevancy Filtering

Purpose: expose only subset of literal assignments to T solvers
Reason: Delays introduction of terms for T-and quantifier instantiation

Idea: Simulate tableau reasoning on top of CDCL

((aAb) V) ((anb)vc) (w(anb)va) (=(anb)vb) ((aAb)Vv-aV-b)

Root clause Definition clauses

Scenario 1: c is assigned to T, root clause is satisfied. Atoms (a A b), a, b are never set relevant
Scenario 2: cis assigned to F, (a A b) is assigned T. Atoms a, b are marked relevant (and propagated to T)

smt.relevancy={0,1,2} (least to most use of relevancy filter)

Ackermann reductions

ag % aygo N /\ (a; =~ b; Va; ~ t;f,} A (‘511' ~ b = b ~ai41) A (ﬂ--e ~C = G ™ Qi)
0<i<100

The proofs are linear if we admit clauses using fresh literals of the form

f?f-f.:'+]]

{ﬁf-;;, i bi M hi =™~] = (4
~ @i+ 1)

{EI-T: ~ ¢; NG i1 == (4

1212

Z3 dynamically introduces such auxiliary clauses based on transitivity of equality and
congruence rules of the form

fi]_ = S51.... ,f,i;: =~ 8 = f{th SN :fk:} = f{ﬁ].: . *:S-‘-:)

smt.dack.threshold = 10, smt.dack.eq = false

[terative Deepening

Assume ((_is nil) list1) ((_ is nil) list2)

(define-fun-rec length ((1s (List Int))) Int - Unsat core: ((_ is nll) IIStl) (_5'55'5"1: (_> {19_"5":"' listl) U‘_ﬂ"‘gth list2)))
(ite ((_ is nil) 1s) @ (+ 1 (length (tail 1s)))))

(define-fun-rec nat-list ((1s (List Int))) Bool

(ite ((_ is nil) 1s) - Assume ((_is nil) (tail list1)) ((_is nil) list2)
E:EE (>= (head 1ls) @) (nat-list (tail 1s))))) Unsat core: ((_ is nll) ||St2) (assert (not (nat-list list2)))
(declare-const listl (List Int))
(declare-const 1ist2 (List Int)) _ . . BT . . R T
(assert (> (length listl) (length list2))) Assume ((_is nil) (tail list1)) ((_is nil) (tail list2))
(assert (not (nat-list list2))) - Unsat core: ((_is nil) (tail list1) (assert (> (length list1) (length 1list2)))

~t t-list listl
(assert (mat-list listl)) (assert (not (nat-list list2)))

Assume ((_is nil) (tail (tail list1))) ((_ is nil) (tail list2))
- SAT

Pre-processing
Rewriting Simplification

For Finite Sets

Finite Set Algebraic Simplification rules

*SNP-> 0
*SUT - TUS ifcode(T) < code(S)

X E{y}o>x=y

fimte Sets Rewriter

] https://github.com/Z3Prover/z3/blob/finite-sets/src/ast/rewriter/finite_sets_rewriter.h B a A % &
[1 Files z3 / src / ast / rewriter / finite_sets_rewriter.h i
< F finite-sets v + Q @ NikolajBjorner add stub for rewriter &8 ® 522be5d - n
Q Gotofile t
L e . Code Blame 26 lines (13 loc) - 438 Bytes 8 & Raw Ll;] ok
[enum2bv_rewriter.cpp . P
D enum2bv_rewriter.h 2 Copyright (c) 2825 Microsoft Corporation
3
D expr_replacer.cpp - Module Name:
[expr_replacer.h >
6 finite_sets_rewriter.h
[expr_safe_replace.cpp | 7
8 Abstract:
[expr_safe_replace.h oL L o
9 Rewriting Simplification for finite sets
[factor_equivs.cpp 10
11
D faCtor*eqUivs'h 12 Sampe rewrite rules:
D factor_rewriter.cpp 13 set.union s set.empty -> s
14 set.intersect s set.empty -> set.empty
D factor_rewriter.h 15 set.in x (set.singleton y) -> x = y
[finite_sets_rewriter.cpp e .) . L o
17 Generally this module implements basic algebraic simplificaiton rules for finite sets
l D finite_sets_rewriter.h 18 where the signature is defined in finite_sets_decl_plugin.h.
) 19
[fpa_rewriter.cpp - ey

J

Let’s be lazy, but not too lazy, but verity

1. Ask copilot to produce rewrite rules and implementation

2. Axiomatize finite sets for a 3-4 variables. Enumerate terms and
mine for equalities.

Q: how would you address the following?

* Correctness of simplification rules and code.
* Adequacy of simplification rules? Do they cover useful cases, what could be

covered.

Pre-processing
Global Simplification

For Finite Sets

ON INCREMENTAL PRE-
PROCESSING FOR SMT

CADE 2023

Microsoft Research TU Wien

Global Simplification

F|S N X]| - suppose this is the only occurrence of X in F.
Can we solve equisatisfiable F without S N X?
Example: If F is monotone in S N X, we could replace S N X by S.

Task 3: develop global simplification rules for finite sets. Integrate rules

i nto ‘3Prover/z3/blob/finite-sets/src/ast/converters/expr_inverter.cpp H &
z3 / src / ast / converters / expr_inverter.cpp L;'

+ | Q

@ NikolajBjorner updates to some_string_in_re per code review comments =3 x

Code Blame 1034 lines (933 loc) - 31.2 KB &8 O

	Slide 1: SMT Solving Fundamentals
	Slide 2
	Slide 3: CDCL(T)
	Slide 4: Elements of Solving
	Slide 5: Search Engines
	Slide 6: overview
	Slide 7: CDCL(T)
	Slide 8: CDCL(T) – Main State Variables
	Slide 9: CDCL(T) - Invariants
	Slide 10: CDCL(T) – Dual Model/Proof search
	Slide 11: Dichotomy – Proofs and Models
	Slide 12: CDCL(T) as inference rules
	Slide 13: CDCL(T) – SAT vs SMT
	Slide 14: CDCL – CaDiCaL loop
	Slide 15: CDCL(T)
	Slide 16: Solver Internals
	Slide 17: Terms and Formulas
	Slide 18: Assertion Internals
	Slide 19: From Assertions to Solver State
	Slide 20: Core left right arrow Solver interface
	Slide 21: Custom Theories
	Slide 22: Model-based Theory Combination
	Slide 23: Relevancy Filtering
	Slide 24: Ackermann reductions
	Slide 25: Iterative Deepening
	Slide 26: Pre-processing Rewriting Simplification
	Slide 27: Finite Set Algebraic Simplification rules
	Slide 28: Finite Sets Rewriter
	Slide 29: Let’s be lazy, but not too lazy, but verify
	Slide 30: Pre-processing Global Simplification
	Slide 31: Global Simplification

